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Preface

The Comprehensive School Mathematics Program (CSMP) is a complete mathe-

matics curriculum for students of all ability levels, grades K-6. The program's

goals of improving the effectiveness of mathematics instruction assume that

students can learn and enjoy learning mathematics, not only standard arithmetic

but also areas of mathematics not traditionally taught in the elementary school.

To accomplish these goals, CSMP presents content as an extension of experi-

ences that children have encountered in their development. Using a "pedagogy

of situations," students are led through problem-solving experiences in an

atmosphere of constant applications, for example, in stories or game-like set-

tings. A feature unique to CSMP is the development of pictorial languages

which foster student understanding of mathematical concepts and provide stu-

dents the means to solve problems without burdensome terminology.

Topics in probability and statistics find a natural place in the CSMP curriculum.

Students find the stories and games appealing and often relate them to everyday

experiences. The development of innovative, pictorial techniques allows the

analysis of probability and statistical situations to be a part of an elementary

mathematics curriculum. The articles in this book summarize these activities

and methods proven successful by the enthusiastic reception by CSMP students.

We extend our deepest gratitude to Fredgrique Papy, former CSMP Associate

Director for Research & Development, whose creativity and tireless efforts

shaped the CSMP spirit and produced many of the ideas in this book. Our spe-

cial thanks also go to Lennart Ride who brought his clever probability stories

and innovative solution techniques from Sweden to St. Louis classrooms. We

thank Burt Kaufman, former CSMP Director, and Clare Heidema, current CSMP

Director, 1ho suggested a need for this book and supported its development.

Our thanks are especially due to the CSMP writers, typist Deborah Wriede,

and artist Steven Sims, who survived the seemingly endless editolial changes.
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We publish this book as a .-esource of ideas for classroom teachers and for

educators responsible for mathematics teacher education. Our hope is that

our experiences will enhance the role of probability and statistics in class-

rooms. We welcome hearing of your experiences.

August, 1982 Richard D. Armstrong

Pamela Pedersen
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Introduction

Lennart Rade

A fundamental goal of education is to prepare children for life in a society, a

society where mathematics is becoming increasingly important. Accordingly,

one goal of mathematics teaching is to provide children tho proper background

for an understanding of the world around them. Both goals are strong reasons

for including probability and statistics in a school's mathematics curriculum.

These areas of knowledge are fundamental to the present-day modeling of our

world in mathematical terms. Probabilistic and statistical methods are impor-

tant tools in industry and in business, and such methods are essential in both

physical and social sciences. It is also important for daily life in our society

that people have some knowledge about the use and misuse of statisticcil rea-

soning. For instance, advertisements often use "statistical" reasoning in the
form of graphs, tables, and verbal arguments in their attempts to influence
consumers.

It is well docuvented that the study of combinatorics, probability, and statistics

strongly motivates children by presenting the challenge and the intrinsic appeal
of applications. Inclusion of these areas in the mathematics curriculum will

further help to foster a positive attitude toward mathematics in elementary

school children.

Probability theory is a very rich mathematical theory in close contact with many
,

other parts of present-day mathematics. Also, probability theory employs many

different mathematical tools. So with probability theory in the curriculum, stu-

dents encounter and use a rich variety of mathematical tools and concepts. For

example, already in elementary school they meet such basic mathematical con-

cepts as sets, functions, and relations and use such basic mathematical tools
as tables, graphs, codes, and abaci.

8
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The Comprehensive School Mathematics Program (CSMP) has from its start been

very interested in the possibilities of including probability and statistics in the

elementary school mathematics curriculum. Lessons dealing with these areas

appear in all parts of the CSMP curriculum and much effort has been used to

investigate appropriate ways to introduce probability and statistics at the ele-

mentary school level. An internationally well-known indication of this interest

is the book The Teaching of Probability and Statistics [I], which includes the

proceedings of the CSMP international conference on teaching probability and

statistics at the pre-college level. This conference was held in Carbondale,

Illinois in March 1962. The participants of this conference adopted a number

of recommendations of which the following may be quoted.

The participants strongly endorse CSMP's efforts to introduce
probability and statistics as subjects for study at elementary
and secondary school levels. They believe that these subjects
should be taught starting from a wealth of realistic examples.
Some emphasis should be placed on their use as tools, both for
the development of mathematical structures and in the building
of applied models.

In teaching probability, full advantage should be taken of prac-
tical experiments, and in particular of simulation methods. The
knovvledge acquired from such experiments should be directly
reinforced by a theoretical framework; this should not be too
rigid. In view of the different possible approaches to the sub-
ject, the formal concepts and theories presented should be
eclectic. . .

Descriptive statistics of physical, biological, and social da-,a
are subjects of great importance to every citizen. They can ..)e

taught at almost every level. Material of this kind could serve
as an introduction to a school course which might include further

topics in statistical theory and inference. Such a course should
be taught in careful coordination with probability theory and
should make use of realistic data wherever possible. . .

The CSMP work on curriculum development is based on some general pedagogical

principles, which also have guided the work presented here. The following

three tenets are basic to the CSMP view of mathematics teaching:

1) Mathematics should be taught as a unified whole.

2) Learning occurs best through interrelated experiences.

3) Children learn by reacting to problem-solving situations.

8 8



In the CSMP curriculum, the learning process is regarded as a spiral process

where children learn by interacting with sequences of related situations.

The CSMP curriculum is published as a sequence of lessons in detailed Teacher's

Guides, supplemented by colorful student workbooks and storybooks £2]. Refer-

ences to lessons described in this book are listed at the end of each article.

The papers in this book offer a selection of the ideas that CSMP has developed

in its effort to effectively teach probability and statistics. The suggestions and

the lessons are the results of many years of discussions and experimentation

with various strategies. All of the ideas reflect classroom experiences.

In a mathematics curriculum, the goal of the earliest activities in probability

and statistics should be to provide students with experiences involving funda-

mental concepts such as randomness, combinatorics, and the display of infor-

mation. In their paper Probability and Statistics in Grades 1 to 3, Mark Driscoll

and Richard Armstrong describe the stories and games in the CSMP curriculum

that introduce these concepts. A key to maximizing the children's benefit from

these experiences is to encourage student discussion about them. In these

stories and games, teachers continually give students an opportunity to state

them- opinions, to consider the possibilities to make predictions, and to discuss

the results. Such intetactive involvement prepares students for the probability

ond statistics situations encountered in the CSMP Intermediate Grades curriculum

as described in other papers of this book.

In An Area Model for Solving Probability Problems, Richard Armstrong presents a

very interesting method of solving probability problems. The method makes use

of a graphical representation in which a square is divided into regions according

to the probabilities present in the problem. This technique allows the solution

of problems dealing with multi-stage random experiments in a very elegant and

concrete way that avoids multiplication of fractions.

The paper includes solutions to some cases of the problem of_points, a classical

problem of probability theory that was in the focus of interest when the theory

was developed by Pierre Fermat, Blaise Pascal, and other mathematicians during

the 17th century. An example of this class of problems is to determine each

9



player's probability of winning a game to 10 points when player A has scored 9

and player B has scored 7. The following illustration shows the area method for

attaining the solution.

9-7

10-9

10-7 10-8

9-10

7
It is seen from the graph that player A has probability of winning and that the

8
1

coriesponding prcbability for player B is Ti .

Usually this kind of problem is solved with the aid of tree diagrams, where pro-

babilities are found by multiplying fractions alcng the branches. In this case,

the following tree diagram would be usea.

From the above diagram we calculate, with the aid of multiplication and addition
7

rules, that player A wins with probability 8

i
2 4. G ( 1

1
x +

22-. ) 2-
x 7 xi) 72 / 8
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This example clearly shows the merits of the area method compared to the tree

diagram method. The latter method is, of course, very powerful and certainly

should also be presented in introductory courses in probability. The paper

Fair Games? in this book describes this metnod.

The study of different random games has always been important for the develop-

ment and teaching of probability theory. The correspondence between Pierre

Fermat and Blalse Pascal focused on problems concerning random games. In

the paper Fair Games?, Jim Harpel discusses a sequence of such games. His

paper describes how to use these games to introduce the methcd of using tree

diagrams. Observe that sucn diagrams do noi require the multiplication of frac-

tions. For instance, in the problem of points discussed earlier, an alternative

is to consider what is expected to occur in 200 trials. This approach leads to

the following tree diagram, from which also it is seen that player A wins with
100 + 50 + 25 7

probability 200
, or

A

The paper Whose Triangle Is It? by Richard Armstrong introduces a classic pat-

tern of combinatorics, the Pascal Triangle, which incidentally is much older

than Blaise Pascal (1623-1662), who used the triangle in connection with his

treatmen' of the problems of points. Students are led to discover the pattern in

connection with a challenging story, and then they use the Pascal Triangle to

sclve other probability problems.



In the paper Codes to Solve Problems, Pamela Pedersen presents three different

,. situations from the CSMP cuiriculum, These situations lead to combinatoric
,

and probabilistic problems that are solved with clever choices of appropriate

codes or abaci, which are very efficient tools for these kind of problems. For

students familiar with these tools from other parts of the CSMP curriculum, the

codes and abaci allow them to solve quite complex combinatoric and probabil-

istic problems.

Probability theory has relations to many other fields of mathematics even,

surprisingly, to geometry. As a matter of fact, random or stochastic geometry

is an important area of present-day probability theory with numerous applications.

A classic problem in this field is the problem of finding the probability that one

may construct a triangle with the pieces formed when a stick is broken at random

in three parts, In the paper Breaking a Stick: Probability Without Counting,

Joel Schneider discusses how this problem is presented and solved in the CSMP

curriculum. The treatment of this problem gives students a first conta-,t with

ho,, probabilities may be calculated when the set of outcomes is a continuum.

In Snunda's Newsstand, Clare Heidema considers an advanced operations re-

search problem, In the literature, the problem is usually called the "Newsboy's

Problem" and is taken from inventory theory. Characteristic for this prcblem is

that a decision about inventory is made once for the entire demand process.

Every day Shunda has to decide how many newspapers to buy from her dealer.

However, the demand is uncertain and the problem for Shunda is to ordoi enough

to realize full profit but not too much so as to avoid losses on the excess.

Shunda uses a graph of daily demand to determine the most profitable inventory,

This paper provides an excellent example on how a problem, which is asually

discussed on a high mathematical level, can be made understandable already

at the elementary school level. The paper shows how statistics as the art of

making decisions when faced with uncertainty can be treated in a meaningful

way at an elementary level.

One important field for applications of probabilistic and statistical methods is

that of demography, that is, the statistical study of human populations especially

with reference to size and distribution. CSMP has developed a sequer,ce of

12 13
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lessons dealing with this topic, which Tom Giambrone describes in the paper

Population Growth. These lessons include work with population growth, the

organization of population data in graphs and tables, and work with population

pyramids. Also, students learn how to find the median age of a population.

These lessons allow students to use hand-calculators in order to work with

real population data.

There is a great growing interest today in the didactics of probability and sta-

tistics and especially so with regard to how these subjects should be introduced

at the elementary school level. A sign of this interest is the 1982 NCTM Year

Book [3], which is devoted to the teaching of probability and statistics at the

school level. CSMP has pioneered work in this area. It is my hope that many

will find the ideas and straLegies described here useful and inspiring in future

work in this important field.

References
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Probability and Statistics in Grades 1 to 3

Mark Driscoll
Richard Armstrong

Young children first encounter the notion of randomness in their everyday exper-

iences. Games often involve spinners or dice. Their parents warn them, "Stop

that, you might hurt yourself," or "It will probably rain this afternoon." CSMP

extends these experiences by presenting appealing stories and games for stu-

dents to consider. The appeal arises not only from the settings buc also from

the challenge tc., the students' intuition and problem-solving skills. To prepare

students for the probability and statistics concepts they will encounter in CSMP's

Intermediate Grades Program, CSMP' s Primary Grade activities focus on three

fundamental notions : randomness, combinatorics, and the display of information.

A key to understanding the concept of randomness is the role of the "unknown.."

Some facts are unknown simply because sufficient information is not available.

For example, only after several clues can students determine a secret number

that their teacher has selected. Other events are unknown because they are,

by nature, random. Thus no one can consistently predict the result of rolling

two dice. A significant insight occurs when children realize that, despite the
randomness, experience or analysis may Lc:veal the likelihood of possible out-

comes.
/-

A discussion of the likelihood of various outcomes when dealing with random

devices such as dice, coins, spinners, or marbles leads naturally to combina-
torial questions such as "How many different outcomes are possible?" CSMP

students' early experiences with arithmetic problems with multiple solutions,

for example, "Find pairs of numbers whose sum is 10," provid9 their first expo-

sure to combinatorics. Their initial tendency in tackling these problems is to

list solutions as they find them, usually unsystematigally. Only gradually do
they recognize the need for organizing a problem's solutions to guarantee that

all of the possibilities have been found. In addition to being a rich source of

15 15 .
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problems for investigation, such combinatorial situations prepare students to

determine the probability of an event since often a first step in studying a pro-

bability problem is to consider all possible outcomes.

The systematic listing of solutiQns to combinatorial problems is an example of

the third focus of the probal-Ality and statistics strand in CSMP, namely the de-

velopment of efficient means of organizing information. In a variety of activities

in the Primary Grades, students experience the value of using lists, tables, and

graphs to record solutions, results of games, or data they have collected. They

discover that organizing the information makes it easier to answer questions and

to draw conclusions about the problem. These early experiences with tables

and graphs prepare students to analyze many statistical and numerical problems

in the Intermediate Grades.

The following three lessons provicle a sampling of activities from the CSMP Pri-

mary Grades Program that illustrate the development of the three concepts out-

lined above.

A COIN PUZZLE FIRsT GRADE

Ms. Kavanaugh takes a paper cup from her desk drawer and shakes it. Her

first-grade students hear coins jingling and try to guess the amount of money

hidden in the cup. However, a few students remember similar activities they

have done and say, "Don't tell us what is in the cup. Give us a clue." Ms.

Kavanaugh carefully states her first clue, "I have exactly six coins. Each coin

is either a dime or a penny." Martha suggests four dimes and two pennies and

the whole class helps her count the amount of money that would be: "l0, 20,
313, 4O, 41, 42." On the board, Ms. Kavanaugh records the five combina-

tions her students find. lo maintain the pace of the lesson, she provides the

other two possibilities herself.

" 6
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334

64

604

154

24 s

514

Several students again prefer guessing the amount of money in the cup. Tommy

seems convinced it's his suggestion, 64. Then a second clue is provided:

"There are at least two pennies in the cup."

"It could still be

"Cross out 51. there's only one penny."
Shortly the class agrees that only the combinations for Sl and W. can be

erased.

"Here is my last clue," continues Ms. Kavanaugh. "There are more dimes than

pennies in this 'cup. If you know the amount of money in this cup, whisper it to

me."

Most students whisper the correct answer, 42, and then Ms. Kavanaugh lets

them see the four dimes and two pennies in the cup.

i
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The discussion in this lesson highlights the distinction between the uncertainty

of "It could be and the deduction "It must be 42." This experience with an

undetermined event is part of the students' preparation for encountering random

events.

The situation in this lesson exemplifies the students' initial experiences with

combinatorial problems in the first grade. The emphasis is on finding many so-

lutions, not necessarily all solutions. The list simply records solutions ; it

need not be organized systematically to suggest missing solutions.

TEMPERATURE BAR GRAPHS - SECOND GRADE

On the first day of school after Christmas vacation, Mr. Warren shows his class

a new Celsius thermometer. . The students' curiosity and questions initiate a dis-

cussion about temperature, thermometers, above zero and below zero readings,

and Celsius and Fahrenheit scales. Mr. Warren passes the thermometer around

the class, and everyone confirms that the indoor temperature is 23°C. He then

pins a duty roster and the following poster to the bulletin board .

TEMPERATURE CHART

; tt I F
4. 4 4

i'4-it41:fL

4 --f-

a 7 415 41 21-144) 1 3 4 5

°Celsius

"I'll hang the thermometer outside the classroom_window," explains Mr. Warren.

"Each school day morning, the assigned student will read the thermometer and

record the reading on this bar graph. I've already shown that this morning's
0

outside temperature was -3 Celsius."

18
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The students read and record the outside morning temperature every school day

in January and February. Often Mr. Warren briefly asks questions about the

day's temperature and the bar,graph, for example:

"Before Nguyen reads today's temperature, who wants to guess what

it might be?"

"What do you predict tomorrow's tenwerature will be?"

"How much colder (or warmer) is today than yesterday?"

"How often have we previously matched today's temlierature?"

"What has been our coldest temperature? our warmest temperature?"

"Which is warmer, 2
0
C or -10

0
C? How much warmer?" ..

After two months of recording temperatures, Mr. Warren suggests that they com-

pare their data to the temperatures for St. Louis and New Orleans. Each child

receives a listing of the two cities' temperatures ,for January and February and

uses that data to draw a bar graph for each city:

Our School

New Orleans

St. Louis

TEMPERATURE CHART

°Celsius

*Celsius

19

*Celsius
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Referring to the three bar graphs, the students respond to Mr. Warren's ques-'

tions:
"Which city had the warmest weather in January and February? the

ccadest?"

" Wha t was the highest temperature for each city? the lowest temper-

ature?"
"Which city had the greatest variation in temteratures?"

"What was the most common temperature in each city?"

As the bell rings, the students insist on drawing a new graph for March and

April and on continuing to record the morning temperature each day. They seem

curious to observe the gradual warming as winter changes to spring.

This two-month activity exposes second-grade students to several benefits of

graphing data. First, the graph imposes an organized presentation of the data,

ordering the temperatures from lowest to highest. Also, the bar graph provides

a very strong visual overview of the data; for example, it is clear that New

Orleans, has a warmer winter than St. Louis. These two features the order-

liness and the visual impact allow students to answer questions about the

data and to draw conclusions much more readily than if the data were in a table

or in a list.

Other second-grade lessons continue the development of the themes of random-

ness and of combinatorics. For example, two lessons concern the rolling of two

dice. By rolling the dice many times and drawing a bar graph of the sum of the

two dice, students conclude that some sums (e.g. , 6, 7, and 8) occur more

frequently than other sums (e.g. , 2, 3, 11, and 12). Hence students experi-

ence that even though the outcome is random, certain events are more likely

than other events.
.,

20
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A CUBE GAME THIRD GRADE

Ms. Schneider shows her class a red cube and a blue cube that she has cut and

folded from cardboard.

Each cube has a number on each of its six faces. Unfolding each cube, Ms.

Schneider shows the shape that she made each cube from. She then draws the

labeled shapes on the board.

Li- 10

10

10

10

1 16 1

16

1

"Suppose," says Ms. Schneider, "that we toss the blue cube three times and

add the numbers that appear on top. What sum could we get?"

A student suggests 30. Several classmates agree, pointing cut that 10 could

be rolled three times. This combination is recorded on the board:*

BLUE 10 + 10 + 10 = 30

The students then offer the other possibilities for the blue cube.

10 + 10 + 4 = 24

10 + 4 + 4 = 18

21 21



Joanne confidently concludes, "That's a..1 of the possibilities for the blue cube

because with three rolls yQU will roll "4" no times, once, twice, or three times."

Similarly, the students find the possibilities for the red cube.

RED 16 + 16 + 16 =

16 + 16 + 1 = 3 3

16 + 1 + 1 = 18

1 + 1 + 1 = 3

Ms. Schneider then sugge:its playing a two-person game with the two cubes,

"One player rolls the red cube three times; the other player rolls the blue cube

three times. The player with the highest sum for the three rolls wins. Which

cube would you rather play with?"

Some students prefer the red cube:

"Two of the red cube's sums, 48 and 33, are higher than any of

the blue cube's sums."
"You can get 16'S with the red cube."

Others prefer the blue cube:

"The blue cube has four 10's while the red cube has four l's."
"You might get a sum of 3 on the red cube and lose for sure."

"You won't roll many 16's with the red cube."

"It's easier to get a "30" on the blue cube than it is to get a

"48" on the red cube."

After the lenqtI4discussion, no consensus is reached and Ms. Schneider se-

lects two students to play the game. The student with the red cube wins; the

score is .33 to 24. Other pairs of students play the game, one at a time. The

22



players with the blue cube win 3 out of 5 games. As the students continue to

play the game, Ms. Schneider often interrupts a game to ask some questions

about the situation, for example,

"The firs: two rolls of the blue cube are 10 and 4. What could this

player's score be after three rolls?" (Answer: 18 or 24)

"The player with the red cube has a total score of 3. Can he win?"

(Answer: No)

"The player with the red cube scores 18. The blue player's first roll
is a 10. Can she still win? lose? tie?" (Answer: She can't lose.
She will either tie or win. )

"The score of the player with the blue cube is 30. The arst two rolls

of the red cube are 16 and 1. Which player is more likely to win?"

(Answer: The player with the blue cube. The other player needs a

16, but there are more Ps than 16's on the red cube.)

At the end of the lesson, the players with the red cube have won 17 out of the

30 games. This evidence convinces many students to prefer the red cube; a

few students remain undecided or still prefer the blue cube. Ms. Schneider,

realizing that a deeper analysis of probability is more appropriate for a later

lesson, brings the discussion to an end.

This lesson illustrates an application of combinatorics and provides a setting

for an intuitive discussion of probabilistic questions. Third-grade activities

place an emphasis on finding all of the possibilities in combinatorial situations.

As demonstrated in this lesson, an organized list aids in reaching the conclu-

sion that no combinations have been missed.

The teacher's questions about what could happen motivate the discussion of

possible outcomes versus impossible outcomes and of likely events versus un-

likely events. Through these discussions, students learn that random events

are not entirely chaotic. An analysis of the random device, the cube in this

lesson, yields information on the likelihood of certain events .

23
23



SUMMARY

A primary goal of the probability and statistics activities in Gades 1-3 is to

provide a variety of experiences involving randomness, combinatorics, and

organizing information. By developing these three topics as described in the

above lessons, CSMP prepares its students for the more sophisticated problems

in their Intermediate Grades Program described in the other articles of this book.

* * *

In the CSMP curriculum, the activities described in this paper appear in the

following lessons:
CSMP Mathematics for the First Grade, Part II, Lesson S73.2

CSMP Mathematics for the Upper Primary Grades, Part I, Lesson L15

CSMP Mathematics for the Upper Primary Grades, Part II, Lessons L6,

L12, L14

CSMP Mathematics for the Upper Primary Grades, Part III, Lesson L12
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Fair Games?

jim Harpel

Many mathematical problems either do not interest children or cannot be pre-

sented in ways that are accthate and yet accessible for elementary-school

students. Fortunate Ix, probability provides exceptions to these limitations.

Paralleling the historical role of games in the development of the theory of

probability, the lessons summarized in this article focus on games involving

coins and marbles. The games are not only enjoyable, but also easy to under-
stand.

Based on their experiences and due to the apparent simplicity of the games,

students have considerable trust in their intuition as they consider the fairness

of the games. They feel that they understand the situations and therefore con-

fidently make predictions about the expected outcomes. Yet in probabilistic

situations, the intuition can often be fooled. Paradoxes abound in probability.

A key question in curriculum development is to determine an appropriate role for

paradoxes. Handled carelessly, paradoxes can destroy the students' trust in
intuition and convince them that probability is inscrutable. Rather, the peda-
gogical goals of using paradoxes should be to intrigue students with situations

having surprising results and to refine each student's intuition to encompass

these results.

To achieve these goals, CSMP employs a three-step procedure for presenting

paradoxical situations : prediction, experimentation, and analysis. Once a
game is explained, the prediction step allows students ta express their opinions

based on their intuition. The predictions force discussion and clearly stated

commitments which set the stage for revealing the paradox.

In the second step, experimentation, students use dice, coins , spinners, or
other random devices to test their predictions by actually playing the game many

times. The conflict between the predictions and the experimental results serves
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to dramatically pose the paradox. A strongly felt need has been created within

the students the discrepancy between predictions and results cries for an

explanation. This need motivates the third step in the process: mathematical

modeling and analysis of the situation.

The need to analyze a probability problem often becomes a roadblock which

ultimately precludes the study of probability in the early grades. Admittedly,

most traditional analyse_ of probability problems are too complex for elementary-

school students. The papers in this book illustrate several techniques used in

the CSMP curriculum that are appropriate for these students. In particular,

the activities in this article illustrate the use of pictorial methods and proba-

bility trees to accurately model the problems and to appeal to students. The

analyses tend to confirm the experimental results and often reveal th rce

oi any discrepancy between those results and the students' predictions. The

paradox within the game situation has motivated the students to proceed through

steps of prediction, experimentation, and analysis. The active personal in-

volvement with the story provides a basis for refining the student's intuition

with regard to probability situations.

To captivate the students' interest, the paradoxes occur in stories about the

protagonist Bruce, a boy who invents games to play with his friends. The games

appear fair but usually favor Bruce.

SAME OR DIFFERENT?

"Two children, Alice and Bruce, are responsible for washing the dinner dishes.

In order that they both not have to wash and dry each night, they decide that

some method be used to select randomly who will wash and dry the dinner dishes.

Bruce suggests that 2 black marbles and 1 white marble be used. Alice will mix

the marbles in her hands behind her back and draw two of the marbles without

looking. What could Alice draw?"

''She could draw two black marbles, or she could draw a black and a white marble."
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"Yes, Alice could draw marbles of the same color or of different colors. Bruce

will try to predict whdt Alice has drawn. If Bruce correctly predicts what Alice

has drawn, Alice must wash the dishes. If he is wrong, he must wash the

dishes. Is this a fair way to decide who washes the dishes?"

With two black marbles and one white marble, the students sense that the game

is unfair but they don't reach a concensus on who is favored. The students dis-
cuss this issue for a few minutes. They insist on playing the game. Two N,ol-

unteers play the game 10 times and record the outcomes on the board.

Different: 44-11 I

Same : Hi I

"Can we tell from these 10 trials if this game is fair?"

This result convinces some students that "different" is favored. Other students

are uncertain as to the fairness of the game since the results are so close to
5-5. The teacher suggests that the students pair off and that each pair plays
the game 10 times and records the outcomes. In this classroom, there are 15
pairs of students.

11150 games will be played. If this is a fair game, in about how many of those

games do you think you will choose marbles of different colors?"

"If the game is fair, 'same' and 'different' will each come up about one half of
the time about 75 times apiece."

As each pair of students completes 10 games, the results are recorded and

totaled. The grand total is:

Different: 103

Same: 47

"Do you think this is a fair game? Should Alice play this game with Bruce to

decide who will wash the dishes?"

"No! The game appears to favor Bruce. He could always guess 'different' and
usually win."
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."Let's find out if that's really so; here are the three marbles."

"What pairs of marbles could Alice choose?"

Students draw cords to indicate the pairs of marbles that Alice could select.

"Altogether there are three possible ways to draw two marbles. In how many

ways could we get a pair of marbles of tha same color?"

"Only by drawing che two black marbles."

"Therefore we have only one chance out of three of getting marbles of the same

color."

"What about marbles of different colors?"

"There are two ways to get marbles of different colors. So there are two chances

out of three of drawing marbles of different colors."
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The teacher draws a probability tree to summarize the information.

"Do you see what this means? When we play Bruce's game, we are more likely

to get marbles of different colors than we are to get marbles of the same color.

If we play the game many times, we can expect that about two thirds of the time

we will get marbles of different colors and about one third of the time we will

get marbles of the same color."

"So what result could we have expecLd in the 150 games we just played? About

how many times could we have expected to get marbles of the same color?"

"We should have gotten marbles of the same coloi. about 50 times, because

3

1 2x 150 = 50, and marbles of different colors about 100 times, l?ecause x
3

150 = 100."

"How does that compare with what actually happened?"

"103 to 47 is close to 100 to 50."

"Is Bruce's game fair?"

"No, he's very likely to win."

The students express little surprise that Bruce's game is unfair. They strongly

doubted that a game with two black marble and one white marble would be fair.
Now the stage is properly set for a paradox.

"If Alice discovers Bruce's game to be unfair, she could refuse tp play with

Bruce or she could suggest altering the game to make it fair. What changes

could we make so that the game is fair?"
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Nearly all of the students suggest adding another white marble so that there

are two white marbles and two black marbles. A few students express the opin-

ion that any game with equal numbers of white marbles and black marbles should

be fair.

"Let's look at the game with two white marbles and two black marbles. Rather

than play this new game 150 times, we'll analyze it."

Much to their surprise, the students notice that this game also is not fair. In

fact, it has the same probabilities as the original game Bruce proposed.

"Neither of these games are fair, but there are fair games with the same rules

but with different numbers of white marbles and black marbles. Try to find a

fair game."

Individually, students test various combinations of marbles. They find several

games that are almost fair, and a few students find a fair game.

"Use one white marble and three black marbles! There are three out of six

chances to select 'same' and three out of six chances to select 'different."

The students play this game 150 times and record that they draw marbles of the

same color 71 times and of different colors 79 times. These results tend to

confirm the analysis; certainly the game seems much more fair than the original

game. There are other fair games with two colors of marbles, but the number of
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marbles involved increases quickly. t

Other variations of Bruce's game can be analyzed. What happens if more black

marbles are added? If more white marbles are added? If a third color marble is

introduced?

The following question motivates another version of the game.

"What happens to Bruce's game if only one white marble and one black marble

are used?"

'You will only get 'different' every time you select a pair of marbles. You have

one chance out of one of drawing two marbles of different colors and no chance

of drawing marbles of the same color."

a 4
S

"To make a more interesting game, let's change a rule. What if we keep one

white marble and one black marble but we draw one marble then replace it and

draw again?"

With this replacement rule, the order in which the marbles are drawn is impor-

tant. The method of analysis must be adapted to take into account the outcomes

white-white and black-black and the order of the draw. The drawing of loops

provides for the white-white and black-black outcomes.

sCO 1110C s

t To find additional fair games is an ex,ellent, challenging project for students.
The increased complexity of the cord diagrams requires the development of new
techniques for counting occurrences of "same" and "different." Fortunately
the diagrams themselves suggest the needed rules. The "next" fair game in-
volves 3 white marbles and 6 black marbles. An algebraic analysis reveals
that the game is fair if and only if the number of white marbles and the number
of black marbles are two consecutive triangular numbers.
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But now the cord represents two distinct outcomes: "white then black" and

"black then white." To represent this, replace the cord by two arrows because

an arrow indicates the order of the draw.

S

D

C)101,C) S
D

The shift from drawing without replacement to drawing with replacement yields

a fair game. In fact, any "same-different" game with replacement and with

equal numbers of white marbles 4nd black marbles is fair. This result partially

justifies any intuitive feelings based on symmetry that students might have had

originally about the situation.

TWO-STAGE PROBABILITY GAMES

The "Same or Different?" lessons and the use of trees to solve combinatorics

problems prepares students to consider multi-stage probability situations. Once

again, Bruce provides the intriguing games.

'Abby and Charles are neighborhood friends of Bruce. One day, Bruce puts three

white marbles and one black marble in a bag. In a second bag, he puts three

black marbles and one white marble. Bruce's game is to flip a coin. If 'heads'

comes up, Abby picks two marbles from the first bag. If 'tails' comes up, she

picks two marbles from the second bag."

Heads

Bag 1

32

Tails

Bag 2

3 2

,.
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"If 0 black marbles are drawn, Abby wins.

If 1 black marble is drawn, Bruce Wins.

If 2 black marbles are drawn, Charles wins."

"Abby and Charles are always suspicious of their friend's games, so they

wonder whether or not it is a fair game. Do you think Bruce has invented a

fair game?"

The students spend several minutes discussing the game. Some students sug-

gest that the game is fair because there are three possible outcomes and each

child has one chance to win. Others are suspicious of the game because it is

possible to draw two black marbles from only one of the bags while one black

marble may be drawn from either bag. The disagreement provides a need to
analyze this game.

"What is the fIrst step or stage of this game?"

"Flipping a coin you get either 'heads' or 'tails' ."

"Yes. What happens next?"

"Marbles are drawn from either Bag 1 or Bag 2."

Several students recognize the similarity of this stage with previous work and

suggest using cord pictures to analyze the results. The labels on the cords
indicate the number of black marbles chosen.
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1 Black

(Bruce)

0 Black 2 Black

(Abbey) (Charles)

1 Black

(Bruce)

The tree representation suggests that Bruce is favored as only he can win in

two ways. Since the product rule has not yet been introduced, other methods

must be used to quantity the situation.

"Suppose that the three children play the game 200 times. What would we

expect to happen? About how many times do we expect to get 'heads'? About

how many times do we expect 'co get 'tails'?

"About 100 times each because 1 x 200 = 100."
2

0 Black 2 Black

(Abby) (Charles)

1 Black

(Bruce)



3 1"Since =
2

an 1
d x 100 = 50, each outcome should occur about 50 times."

6

1 Black

(Bruce)

0 Black 2 Black

(Abby) (Charles)

"Now we can decide how heavily Bruce's game favors himself.

games out of 200 would we expect Abby to win?"

"Abby should win abotIt 50 games."

"What is Abby's probability of winning?"

her chances are 50 out of 200."

1 Black

(Bruce)

About how many

1Similar questioning determines that Bruce's probability of winning is 7 and
1Charles' probability of winning is T. The intuitive approach of "let's pretend

to play 200 games" allows students to calculate these probabilities without

recourse to the multiplication and addition of fractions.

"The game is not fair. Bruce has the best chance of winning."

"Yes ; that is what Abby and Charles concluded too, and they were not very

happy with Bruce's game. Could we modify this game so that it would be a fair
game?"

Some students suggest that the composition of marbles in the bags does not

need to be changed to get a fair game.

"Whenever 'tails' followed by a draw of one black marble occurs, we just start

the game over again. If this game were played 200 times, Abby would win about
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50 times, Bruce would win about 50 times, Charles would win about 50 times,

and the game would have to be started over about 50 times."

Other students discover that by adding two white marbles to the first bag and

two black marbles to the second baa, a fair game results. Analysis of this

situation verifies that the new game is fair.

0 Black: 10 cords

1 Black: 5 cords

1 Black: 5 cords

2 Black:10 cords

t

Again, only Bruce can win regardless of which bag is chosen. Thus some stu-

dents still suspect Bruce is favored. Only by constructing a probability tree

and considering play of 150 games are the "hold-outs" persuaded.

1 Black

(Bruce)

0 Black

(Abby )
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Even though only Bruce has two ways `,.%) ,vvin, the game is fair:

50 1Abby; 50 games;
150 3

50Bruce : 25 + 25 games ; 17-6

50 1Charles: 50 clamps; =
3

1

3

SUMMARY

The immediate goals of these activities are to provide students with appealing

probability problems that they are eager to understand and to develop the tools

needed to analyze the problems. The paradoxes in Bruce's games usually lead

the students to disagreeing predictions and experimental data. These discre-

pancies intrigue the students and thereby create a need for a deeper understand-
ing of the problem. The analyses, based on dot and cord pictures and tree

diagrams, provide visual means for explaining the paradoxes. After revealing

the source of a paradox, the challenge is to use the same analytical tools

together with trial and error to find modifications that produce a fair game.

The mathematical goal of these activities L to introduce tree diagrams as a

means for determining probabilities. Tree diagrams are a powerful tool for

analyzing probability problems beca _.se they explicitly present all of the random

events within a situation in their logical order, and they offer strong visual

support for the appropriate multi- lication and addition of probabilities. Exper-

iences with tree diagrams lead directly to the basic algebraic rules for combining

probabilities.

This paper demonstrates a way to introduce tree diagrams to elementary school

students; a key is to avoid any need to add or multiply fractions. Instead, stu-
dents consider what "should" happen if a situation, for example, a game, is
repeated a large number of times. Running, for example, 200 games through a

probability tree determines each player's expected number of wins and thus
his/her probability of winning. This technique, along with prediction and
experimentation, serves to develop intuition with regard to probabilistic

situations.
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* * *

In the CSMP curriculum, the activities in this paper appear in the fourth-grade

lessons from the Probability and Statistics strand.



Codes to Solve Problems

Pamela Pedersen

Situations involving equally likely outcomes provide a good place to begin

studying probability, a place accessible to students at the intermediate grade
levels. In problems involving a finite number of equally likely outcomes, the

measure of the probability that a particular event will occur is simply the ratio

of the number of favorable outcomes to the number of possible outcomes. To

measure the probability of a particular event occurring in such situations, one

needs to count:

a) the elements in the outcome set, and
b) the-elements in a particular subset (event) of the outcome set.

In these situations probahility questions reduce quickly to combinatorics ques-
tions, probability providing an appealing context in which to develop combinatoric
technique s .

This paper describes three probability situations from the Comprehensive

School Mathematics Program (CSMP), each situation involving a set of equally
likely outcomes. To solve the problems posed, counting techniques are used
that fit the interests and experiences of students in the intermediate grades.
Each of the solutions involves a mathematical model of the situation in which

the counting of outcomes is readily achieved, the necessary correspondence

between the situation and the model being accomplished by a code.

In two of the three situations, the code sets up a one-to-one correspondence

between the possible outcomes and configurations on base abaci "pencil and
paper" schematics upon which convenient number base systems are imposed. To

understand these solutions, students need to have many prior experiences wi:n

various base abaci, gradually building confidence that for every number there is
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exactly one standard configuration on any given abacus, and that every confi-

guration on an abacus represents exactly one number.

The third situation employs a rectilinear grid system as a coding device. The

grid system provides a strong visual aid that makes clear how to apply the stan-

dard product rule for cornbinatorics in the contpxt of this problem.

Before considering the three situations, let us look briefly at base abaci.

b 65 Ei 63 6 I 6 1

1

A checker on an abacus assumes the value of the board on which it is placed.

The number represented by a co:ifiguration of checkers on an abacus is the sum

of the values of the checkers. For example,

729 243 81 3 1

0

represents the decimal number 33 (27 + 3 + 3) on a Base Three abacus.

For each abacus, there is a rule governing the valid trading of checkers. If b

is the base number, the rule of the Base b abacus is :

b checkers on any board of the abacus represent

the same number as one checker on the next

board to the left.

4 0
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For example, on the Binary abacus two checkers on a board . . .

64 32 16 4- 2 1

. . . can be traded for one checker on the next board to the left and vice versa.

64 3 2. I 6 8 4 2 1

-
? ............"."

1

On the Base Five abacus five checkers on a board . . .

3,125 625 125 25

. . . can be traded for one checker on the next board to the left and vice versa.

3.125 625 125 25 5 1

The standard or usual configuration for a number is the configuration that uses

the fewest number of checkers to represent it. By making trades , we can always

start with a configuration for a number and arrive at its standard configuration.

For example, the following sequence demonstrates a series of trades on a Binary

abacus for simplifying a non-standard configuration for 21 to the standard confi-

guration.
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ANA
AMA

11
MOP

16 1

e

16 8 2 1

e
A ,

16 8 q. 2 1

e

16 8 2. 1

lb B

L = 21

It is clear we can put any number n on a base abacus, for we can simply put n

checkers on the ones' board. Furthermore, if we make all of the possi8le trades,

lwe will arrive at one and only one configuration for n, namely its standard con-

figuration on the given abacus.

The following three situations are representative of the CSMP philosophy and

approach to mathematics, in particular to combinatorics.

RANDOM ART

One of Nabu's interests is painting. He does not paint portraits or landscapes;

he paints pictures with red and blue squares, randomly selecting the color for

Nabu is a fictional character appearing in several CSMP lessons.

.12
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each square. To decide the color of each square, Nabu first outlines the pic-

ture:

Then for each small square he takes a red marble and a blue marble in his hands

and shakes them. He puts them behind his back and brings one marble forward.

The color of the marble determines the color of the square. He continues in

this way until all four squares are painted.

11)10

How many different pictures with four squares could Nabu paint?

Students might suggest drawing all of the pictures, but they would need a syste-

matic way of accounting for all posSibilities and of finding duplicates. One

method that will do both involves imposing a Binary abacus on thp picture. We

use a Binary abacus rather than an abaL:us for a different base because there are

only two possibilities for each square either Nabu colors it red or he colors

it blue. Since there are four squares in the picture, we need only consider the

first four boards of the abacus.

8

We can set up a correspondence between the paintings and the configurations on

these four boards of the Binary abacus in this manner:

4 3
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Having a square colored red is equivalent to having a checker on the

corresponding board of the Binary abacus.

Having a square colored blue is equivalent to not having any checkers

on the corresponding board of the Binary abacus.

corresponds to 8 4.

21 I

The abacus provides a way of assigning a number to each painting. The code

number for a painting is the decimal number represented by the corresponding

configuration on the Binary abacus. For example,

6 4. 13

For each painting there is a unique number, and for certain numbers there is a

painting. Which numbers are they? The smallest is 0, assi led to the picture

with four blue squares; the largest is 15, assigned to the picture with four red

squures.

i

0 15

So there are at most sixteen (0 through 15) possible paintings. To be con-

vinced that all sixteen are possible, we could actually do the coloring for each

of the numbers 0 through 15; since there are few in number, this is a realistic

task. But in fact students are convinced already, being familiar with abaci

from previous activities.
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There are sixteen possible paintings, but some of them are essentially the same.

For example,

1

,.

. . by rotating any one of these four paintings, we can get the other three.

Using rotations to partition the set, we get three subsets of four-of-a-kind

pictures, two subsets of one-of-a-kind pictures, and one subset of two-of-
a-kind pictures.

lb If

\

\

ii I

lb 81.

)

2. _ 1

i6 8

Each of the 16 pictures is equally likely to be painted by Nabu because of the

"one red-one blue marble" method used to select the colors. So to find the

probabiltty that Nabu will paint a picture from any one of these subsets, we

can take the ratio of the number of elements in a subset to the number of ele-

ments in the set. The probabilities provide a means for measuring the rarity

of Nabu's various pictures.

.1 5
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Similar methods could be used for painting with nine scluares. Again Nabu

paints each square red or blue. There are many more paintings that are possi-

ble, as expected. To count them we can use the Binary abacus similarly to the

way we used it for the four-square picture. This time we use nine boards of

the abacus.

256 128 6*

32 lb a

4 2 I

The correspondence between colorings and configurations of these nine boards

oi the abacus is set up as before; the code numbers are assigned in the same

way. For example,

PPP'
corresponds fo

256 128 64

32 16 8

Li__ 2

= 163

The smallest code number is 0, corresponding to the picture with nine blue

squares. The largest code number corresponds to the picture with all red

squares.

111.
256 128 '"

32 lb 8

1

To find out which number is on'the abacus, we could add the values of the nine

checkers. But there is a more clever way!

/16
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Place an extra .checker on the ones' board. The extra checker on the ones'

board sets off a chain of trades (1 + 1 = 2; 2 + 2 = 4; 4 + 4 = 8; . . .) by
the "two for one" rule of the Binary abacus. The final result is two checkers

on the 256-square.

256, I28 64

0
32 lb 8

0
4_ 2 I

III'
256 128 64

32 lb 8

4 2 I

= 2x256 = 512

Since an extra checker was added, the largest code number is 511 (512 - 1).

Each code number from 0 to 511 represents a different painting. Therefore Nabu

can draw 512 different pictures. The one-to-one correspondence between the

numbers 0 to 511 and Nabu's paintings need, not be proven in any formal sense;

previous activities with base abaci build credibility for this correspondence.

SPIES AND BRIDGES

This is the story of a spy named "Boris." Boris has six helpers whose code

names are "a", "b", "c", "d", "e", and "f". Each day Boris's job is to assign

each helper to observe one of three bridges. We call the bridges "0", "1", and

C bi

e. de

Boris assigns each spy to observe exactly one bridge. He might make the assign-

ment so that all bridges are covered, or just one or two. He uses an arrow pic-

ture to record how the helpers are assigned to the bridges.
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One day Boris makes this assignment:

Each day Boris transmits the assignment to headquarters. He must send a se-

cret message, but the arrow picture is certainly not very secret. Since there

are three bridges, Boris decides that he could use the Base Three abacus to

produce a secret code number for each assignment and lets each of six boards

of the abacus be for one of the spies.

24.3 81 2 q 3 1

f e d c b a

The number of checkers (zero, one, or two) on a spy's board indicates to which

bridge a spy is assigned. For example,

243 81 27 9

0

3 1

a 1

4' ed c ba
correscionds

to

The code number for the assignment is the decimal number represented by the

corresponding configuration of checkers on the Base Three abacus. The code

number for the preceding arrow picture is 714:

(2 x 243) + (2 x 81) + (2 x 27) + 9 + 3 = 714
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Therefore, instead of sending a picture of the assignment to headquarters,

Boris, in this case, sends the message "714 code 3" When received, head-
quarters knows to put 714 on the Base Three abacus to determine Boris assign-

ment of spies to bridges.

The following diagram indicates how headquarters would decode the message

"21)0 code 3."

200 = (2)(80 + 27 q (2x1)

+
243 81 27 q 3 i

e

f' e c b a

For each assignment there is a unique number since the assignment indicates

the number of checkers to place sin each board of the abacus. For certain num-

bers there is an assignment. Which numbers could they be? The smallest is

clearly 0, corresponding to all six spies watching Bridge 0.

243 81 27 q 3 1

i
4.

OINED

e d c b a

0

The largest number corresponds to each spy watching Bridge 2.

243 81 27 cr. 3 1

0 e

f e d c b a

To find out which number this is, one could add the values of the twelve check-

ers. But is there a more clever way? Repeat the trick used to determine the

largest number on the three-by-three Binary abacus .
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Place an extra checker on the ones' board. The extra checker on the ones'

board sets off a chain of trades by the "three for one" rule of the Base Three

abacus. The final result is a single checker on the next board to the left of

the original six.

2'4.3 81 27 et 3

e

f e d c b

7241 20 81 27

f ed c ba

i

e
e
a

1

i = 72cl

Since an extra checker was added, the largest possible code number is 728

(729 - 1). We conclude that there are at most 729 possible assignments (re-

member that 0 is a possible code word). In fact, each whole number between

0 and 728 represents a unique assignment, so there are exactly 729 possible

assignments. This one-to-one correspondence between the numbers 0 through

728 and the assignments that Boris can make does not need to be shown formally;

prior activities with abaci build credibility for the correspondence.

Suppose that one day the enemy plans to blow up Bridge 2 and that Bads, not

knowing this, assigns the spies randomly to the bridges. What is the proba-

bility that Bridge 2 will be covered by at least one spy?

It is because the spies are randomly 3 ssigned to bridges that we have a set of

equally likely outcomes. There are many ways for Boris to make random assign-

ments; for example, he could use a spinner circle divided into three congruent

parts, a set of random six-digit numbers from the set f 0, 1, 21, or three iden-

tical marbles labeled "0" , "1", and "2" .

To answer the question posed, we need to compare the number of possible as-

signments with the number of possible assignments in which Bridge 2 is covered.

We have already found the former to be 729. Let us now proceed to find the

latter indirectly by calculating the number of assignments in which Bridge 2 is

not covered.
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Consider any assignment of spies to bridges in which Bridge 2 is not covered.

Then each of the six spies would be assigned either to Bridge 0 or to Bridge 1.

Since for each spy there are only two possibilities to consider, whether a spy

is assigned to watch Bridge 0 or Bridge 1, a Binary abacus rather than a Base

Three abacus can be used for the counting.

32 lb 8 ii. 2 I

f e d c b a

We can argue similarly to the way we did in the case of three bridges. If a

spy is assigned to Bridge 0, the corresponding board on the abacus is empty;

if a spy is assigned to Bridge 1, one checker is placed on the corresponding

board of the abacus. The smallest code number is 0 (all six spies are assigned

to 3ridge 0). The largest code number is 26 - 1, or 63 (all six spies are as-

signed to Bridge 1). There is a one-to-one correspondence between the Limbers

0 through 63 and the possible assignments to Bridges 0 and 1. We conclude

that there are sixty-four possible assignments of six spies to two bridges. The

probability that none of the spies will be assigned to Bridge 2 is about 0.09:

26 64 rz 0.09
36 729

Therefore the probability that Bridge 2 is being watched is about 0.91:

729 - 64 665 ,-- 0 91
729 729
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Going one step further, we could ask: What is the probability that all three

bridges will be covered if Boris randomly assigns the six spies to bridges?

To find this probability, we need to compare the number of possible assignments

in which all three bridges are covered to the total number of possible assign-

ments. We have already found the latter to be 729. To find the former, we can

count the possible asSignments in which at least one of the bridges is not cov-

ered and subtract this number from the number of all possible assignments, 729.

But we have already done most of the work! We have found that the number of

possible assignments in which Bridge 2 is not covered is 64. By repeating the

argument, there are 64 possible assignments in which Bridge 0 is not covered,

and there are 64 possible assignments in which Bridge 1 is not covered.

At first glance it might appear that there are 3 x 64 possible assignments in

which at least one bridge is not covered, but we must not overlook that in

counting both the possible assignments in which Bridge 2 is not covered and

the possible assignments in which Bridge 0 is not covered, we have twice

counted the single assignment of all six spies to Bridge I, Likewise, we have

counted the assignment of all six spies to Bridge 0 twice and the assignment of

all six spies to Bridge 2 twice. Therefore, the number of assignments in which

at least one bridge is not covered is 3 less than 3 x 64.

(3 x 64) - 3 = 189

The number of assignments in which all three bridges are covered is 540:

729 - 189 = 540

If Boris randomly assigns the bridges to six spies, the probability that all three

bridges will be covered is about 0.74:

540 0.74
729

0,4_
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Note that learning Boris' code for sending messages and counting the number of

assignments are worthwhile and interesting combinatorics problems in themselves.

In the CSMP curriculum, only the possible assignments are counted. Finding the

probability that Bridge 2 is not covered and finding the probability that ali three ,

bridges are covered are natural extensions of the material and would be appro-

priate for students in grades 7-9 and possibly as early as grade 6.

HOW MANY PERMUTATIONS?

Angela, Barbara, Charles, Edward, Mark, and Troyce each randomly select a

piece of paper with one of their six names written on it. Unfolding the paper

and reading it, each person with his/her right hand takes the left hand of the

person named. We use an arrow picture to record the situation that results.
I hold your left hand

with my right hand

Angela

Cher leS

Barbara

Mark

Edwara

.=411111

(1;)
Troyce

Notice that in such a picture, exactly one arrow starts at each dot and exactly

one arrow ends at each dot.

How many different situations could lesult from six people doing this activity?

To answer this question, we will use a grid to count the corresponding arrow

pictures . For simplicity, we'll refer to the six persons by their first initials :

, "B", "C", "E" , , and "T".

T

M

E

C

B

A

BCE MT
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We'll represent arrows on this grid by placing checkers appropriately. For

,
example, there is an arrow from Mark to Edward. We put a checker in the I

square where the column for M meets the row for E.

A

B-CEMT

Representing arrows in this way, the original arrow picture corresponds to the

configuration of checkers to the right of it.

Charles

Angela

Q41
r r ye t..`

Barbara

Ed Wd rd

A

A

r

BCEMT

Because exactly one arrow starts at each dot and exactly one arrow ends at

each dot, there is exactly one checker in each row and in each column. Count-

ing the number of different arrow pictures is equivalent to counting the number

of ways to put exactly one checker in each row and in each column of the grid.
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How many choices are there for

putting a checker in column A?

Six.

Suppose we put the checker in row E.

How many choices are there for

putting a checker in column B?

Only five because the checker in

column B cannot be put in row E

since there already is a checker

in that -ow; in other words, two

children cannot get Edward's

name.

A

PA

B

A

A

A

A B

We make use of the product rule for combinations here : namely, if there are

six possibilities for putting a checker in the f_ st column and there are five

possibilities for putting a checker in the second column, there are 6 x 5 ( 30)

possibilities for assigning checkers to the first two columns.
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We continue in this manner until all six columns have been considered. Each

time, the'number of options for a checker is reduced by one ; that is, there are

four choices for column C, three choices for column E, and so on.

A

1°-/XXX
*

e xXxxx
Xxxx

X
. X

A B C EMT

Using the product rule, we find that there are 720 (6 x5x4x3x2x 1)
different ways to place six checkers on a grid with exactly one checker in each

row and in each column. Therefore, there are 720 different arrow pictures and,

returning to the original problem, 720 different ways of assigning the six chil-

dren to hold hands.

The 720 pictures fall into natural categories involving the number of cycl._

Such an arrow picture can have from one to six cycles.
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The consideration of cycles leads to a probability question: if the pieces of

paper with children's names are given out randomly, what is the probability of

getting one cycle a connected arrow picture? To find out how many of the

720 arrow pictures are connected, we'll determine how to locate six checkers

on the grid 1.9 such a way that the corresponding arrow picture is connected.

Each time, before we place a checker, we'll count the number of.choices for

that checker.

Let's start with A. Where could we place a checker in column A? Anywhere

except the first row. We cannot place the checker in row A because we would

have a loop at A and eventually more than one piece. We have five squares to

choose from. Suppose we choose row C and draw an arrow from A to C, that is,

Angela gets Charles' name.

T

M

E

C

B

A B CE M T

T.

M
E

It would seem natural to cLnsider column B next, but that cholLe leads to later

complications in the argument. Since the first arrow ends at C, we consider

next the arrow starting at C. Where could we place a checker in column C? We

cannot place I, in row C because there would be a loop at C. Also we cannot

place it in row A because there would be a two-cycle between A and C. We have
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four squares to choose from. Suppose we choose row M and draw an arrow

from Charles to Mark.

II

E

C

e'

x I-

ABCEMT
E

There are five choices for column A and four choices for column C. Using the

product ,ale again, there are 20 (5 x 4) c-hoices for the two columns A and C.

Having just drawn an arrow from C., to M, we would next consider column M.

We continue in this manner for the remaining four columns. Each time the num-

ber of options for drawing an arrow is reduced by one.

PA

E

C

B

A

x
>CX
x *

XXXX
XL X X

XXX XX
ABCEMT

Having counted the choices each time, we use the product rule to conclude that

there are 120 (5 x4 x3 x2 xlx 1) different ways to have a connected

arrow picture. So the probability of getting a connected (one-piece) arrow
120 1pic.-re is -.77- or -7.
I cu 0

00
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CONCLUDING REMARKS

In this paper you viewed three problem-solving situations from CSMP's Mathe-

matics for the Intermediate Grades and the methods used to solve the problems.

These actiities illustrate the pedagogical role of both stories and models in

the leaining of mathematics. The stories udd interest to the combinatorial

problems and foster the students' understanding of the situation. The various

codes demonstrate the power of models to simplify and clarify the solutions to

mathematical problems. The models provide a critical link between the problem

and its solution. We, the CSMP staff, found ti-,ese methods to be particularly

successful with students in the intermediate grades and also to coordinate well

with several themes developed in the CSMP curriculum.

Often a particular method of solving a problem has a side benefit a bonus of
some kind. In "Random Art" and in "Spies and Bridges," the method of using

abaci to count the possible outcomes not only accomplishes the enumeration

but actually provides a device for generating a compleie list of possible out-

comes, should ever such a list be desired. (In many combinatoric situations,

constructive existence proofs are preferred. ) Consider Nabu's artwork. We

count Nabu's possible works of art by setting up a one-to-one correspondence

between the numbers 0 to 15 and the possible paintings, a correspondence that

we set up through the use of the Binary abacus. How many numbers there are

from 0 to 15 is evident; the enumeration of the possible paintings is accom-

plished. But should we wish to see a display of the sixteen possible works of

art, we need only to find the corresponding painting for each of the numbers

0 to 15.

MOOED
01011111

MINIM

-->

>
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In "How Many Rermutations?" we use the product rule as the counting device.

But recognition of the situation as one in which it is natural to employ the pro-

duct rule is aided by setting up a correspondence between certeiin configurations

of checkers on a grid and the permutations that we are trying to count.

The CSMP curriculum presents many techniques for solving problems. We want

to encourage students to meet new situations with a curiosity and an openness

toward new solution techniques. Such an attitude does not come readily! We

can aid its formation by presenting mathematically rich situations that interest

the students and by carefully choosing the techniques to solve the problems that

arise. For if we can get to the heart of a situation by building on the students'

mathematical experiences and by using tools natural to the situation, '--,e stu-

dents cannot help but be impressed by the mathematics involved and remember

its value.

* * *

In the CSMP curriculum, the activities in this paper appear in the fifth- and

sixth-grade lessons from the World of Numbers strand.
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Whoic 'Mangle Is It?

it

Richard D. Armstrong

4,

A

1

The arithmetic triangle as

depicted by the Chinese

mathematician Thu Shih-Chieh

in 1303

111111111.
1 2 3 5 6 7 8
I 3 6, 10 15 £1 28 "

I 4 IO 20 35 56.

1 5 15 35 70.
I 6 21 56

1 7 28 .

1 8

1.

The arithmetic triangle as

constructed by Blaise Pascal

in Treatise on the Arithmetic

Triangle, published posthumously

in 1665

The arithmetic triangle, commonly known as Pascal's Triangle, has fascinated

mathematicians for centuries. In about 1100, Chinese writers and the great

Arab poet and scientist Omar Khayy6m referred to algebraic patterns that suggest

their knowledge of the arithmetic triangle. In 1303, Chu Shih-Chieh depicted

part of the triangle in a book on algebra and even then described it as an old

method for expanding eighth and lower powers of binomials, for example,

(a + b). Much later, in the 1550's, the two Italian mathematicians Niccolo
Tartaglia and Gilolamo Cardano both investigated properties of the number
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patterns in the arithmetic triangle and appear to have applied it to problems in

both algebra and combinatorIcs.t A century later, Blaise Pascal (1623-1662)

wrote Treatise on the Arithmetic Triangle in which he identified and proved

interrelationships among numbers in the triangular table. Furthermore, he

developed techniques for applying the arithmetic triangle to combinatorial

solutions of probability problems.

Whose triangle is it? Chu's? Tartaglia's? Cardano's? Pascal's? Both

European and Oriental origins of the arithmetic triangle are obscure. Some

historians question the originality and, therefore, the significance of Pascal's

contributions. Still, due to his treatise, the title "Pascal's Triangle" seems

appropriate.

With its elegance and basic simplicity, the arithmetic triangle can and should

also belong to elementary school students. This article presents a detective

story from lessons in the fifth-grade CSMP curriculum, prompting students to

construct Pascal's Triangle as they solve a problem about locating stolen dia-

monds. The latter part of the story introduces a code that provides a link

between Pascal's Triangle and its application to combinatorial problems. The

article concludes with a set of probability problems that demonstrates the use

of Pascal's Triangle and the code to determine probabilities.

4- Most applications of the arithmetic triangle stem from either binomial expan-

sions or combinations. The appendix to this article provides examples of these

two applications.
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THE STOLEN DIAMONDS t

East --->----

After taping a poster to the board, the teacher presents a problem by telling

this story. "Here is a street map of part of a city. T is the house of the famous

detective, Trek. Some diamonds were stolen from Trek's house and he suspects

that they are hidden at X. In order to find clues about who the thieves might be,

Trek decides to explore all the routes from his house, T, to the diamonds at X.

He must be careful because in this part of town all of the streets are one-way,
either north or east. Trek is driving, so he must stay on the streets. About
how many different routes from T to X do you think there are for Trek to investi-

gate?"

After tracing several routes from T to X along the one-way streets, students

discover that each such route is fourteen blocks long since X is eight blocks

east and six blocks north of T. The students' estimates of the number of differ-

ent routes from T to X typically vary from about 20 to 80. Now the challenge is

to count the number of routes.

t The two activities, "The Stolen Diamonds" and "The Burglar Suspects," are
based on the Storybook "THE HIDDEN TREASURE" by Fr6d6rigue Papy. The
collection, Stories by Frederigue, is available from CEMREL, Inc., St. Louis,
Mis souri .
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Students first focus on the area near

Trek's house and attempt to count the

number of routes to each labeled

intersection.

By tracing, they readily find the

answers and are able to explain the

"2, 3, 4, 5" pattern. They also

note that there is only one route to

each intersection directly east or

directly north of T.

Alter several attempts, students

accurately trace the six routes from

T to P. Systematically counting all

jff the routes from T to R appears

ormidable. During their experi-

mentation, a few students nctice

that every route from T to R must

pass through E or P, but not both.

Since there are four routes from T

to E and six routes from T to P,

there are ten (4 + 6) routes from

T to R. Symmetrically, there are

also ten routes from T to S.

64
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=z
2

T

T

G

E

C

A B D F

East

1 5

1

G

4

E

3
,

1

C

2 3 4 5

A

1

B

1

D

1

'F

1

1 5

1 4

1

E

3

R

6

1 2

P

3

S

4 5

Ai
1 1 1 1
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The insight concerning intersection

R readily generalizes. All routes to

U pass through R or S, so there are

twenty (10 + 10) routes from T to U;

all routes to V pass through G or R,

so there are fifteen (5 + 10) routes
to V; and so on.

Students use this addition pattern

and symmetry to quickly complete

the grid. There are 3,003 different

routes from T to XI A truly unbe-

lievable result. Yet the simplicity

of the pattern quells the doubtofs

in the class.

2

1 5

G

1 4 10 1

R U

3 6 10 15

P S

2 3 4 5

1 1 1 1

East

,- 1

X
1- 7 28 84 210 462 924 1716 3003

21 56 126 252 462 792 1287

1 5 15 35 70 126 210 330 495

10 20 35 56 84 120 165

1 3 6 10 15 21 28 36 45

1 2 3 4 5 6 7 8 9

it I I 1 I I I 1

East

In soltinq this problem, students have constructed a part of Pascal's Triangle;

though the shape of the array of numbers differs from the more common triangular

arrangements. Mathematically the choice of arrangement is unimportant, and so

we will continue to call it "Pascal's Triangle." Pedagogically the rectangular

array is natural for both the story about Trek and the applications discussed

later.

Looking ahead to applications of Pascal's Triangle, it is important to realize

that the students have not only determined the number of distinct paths from T

to X, but also the number of distinct paths from T to any intermediate intersec-

tion. For example, the students' construction indicates that there are 210

distinct routes from T to the intersection six blocks east and four blocks north

of T. The students could continue the additive pattern to find any element of

Pascal' s Tria ngle .
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The above story about Trek following routes does not only prompt the construc-

tion of Pascal's Triangle, but also provides a model for many applications of

the triangle. In fact, many combinatorial problems can be directly interpreted

as problems about counting the number of distinct routes from T to the appro-

priate intersections on the grid. The continuation of the story about Trek

introduces a binary code which provides a key link between Pascal' s,..Triangle

and its combinatorial applications.

"For each route Trek travels from T to X, he uses a secret code to record it in

his notebook. One day Trek writes 10110000111000 in his notebook. Can anyone

guess Trek's secret rule for writing codewords?"

Several students agree on the

route for the given codeword:

10 1 10 00 0 1 1 10 0 0

7 28 84

120 :52 402 792

X
3003

128721

_______...................210

50

15 35 70 120 210 330 495

10 20 35 50 84 120 165

10 15 21 28 30 45

I 2

T East ------>-----

By finding the correct routes for several codewords and by writing their own

codewords, most students prove that they have discovered the rule: 0 means to

go east one block; 1 means to go north one block. They also notice that each

codeword for a path from T to X has exactly fourteen digits : eight O's and six

'I's. This occurs since X is fourteen blocks from T, eight blocks east and six

blocks north.

How many 14-digit codewords are there with exactly eight O's and six 1' s?

3,003, of course; due to the one-to-one correspondence between these code-

words and the routes from T to X. Trek's code itself intrigues students and,

most importantly, it prepares students to apply Pascal's Triangle to combina-

torial problems. The following episode from Trek's adventures illustrates this

role of the 0-1 binary code.
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THE BURGLAR SUSPECTS

Trek's story proceeds : "During his investigation, Trek learns that a gang of

six thieves have stolen the diamonds. Trek has fourteen suspects and is sure

that all six thieves are among his suspects. He feels that they would confess

if he could interview all six thieves together. So he decides to interview the

fourtee,1 suspects in groups of six. Trek draws fourteen dots, labels them "a"

through "n'' , and encircles six dots to represent the first group of six suspects

he will interview."

4Da

b
g

1 k

"For each group of suspects he interrogates, Trek decides to write a codeword

in his notebook. He writes 00101101010100 for the group of six suspects indi-

cated in the above picture."

Students break the code by aligning the digits of the codeword with the letters

of the alphabet.

a bcdef ghi jklmn
00101101010100

Trek's rule is : write a 1 for each suspect in the group to be interviewed and

write a 0 for each of the other suspects.
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Students then confront the inevitable combinatorial question, "How many differ-

ent groups of six suspects could Trek interview?" Many students groan drama-

tically, but a few spontaneously respond "3,003." They notice that each code-

word for a group of six suspects must have fourteen digits : six 1 's and eight

O's. Since they have just determined that there are 3,003 such codewords,

they realize that there must also be 3,003 distinct groups of six suspects.

The one-to-one correspondence is readily accepted.

The above solution demonstrates several advantages of imposing a binary code

on an appropriate combinatorial problem.

Pedagogically, the code suggests to students that the current problem

might be related to earlier problems involving Pascal's Triangle.

Mathematically, the binary code defines the one-to-one correspon-

dence between the elements of the problem and the appropriate paths

on the grid.

The codeword identifies the precise entry of Pascal's Triangle that

is required for the problem at hand.

The following activity illustrates th-.3se features through a further application of

Pascal's Trthngle to a combinatorial problem. Within a story about a custom in

a foreign country, students encounter the followthg problem:

In how many different ways can three brass rings and

sevep silver rings be arranged on a pole

The two types of rings suggest.

a 0 -1 binary code. Each codewoid

will have ten digits : seven 0 's

and three l's.
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There is a one-to-one ..:orrespondence between the arrangements of the seven

silver rings and three brass rings on the pole and the cadewords with seven

O's and three 1 's. Therefore the original problem is equivalent to the question:

"How many different codewords are there with seven O's and three 1 's? " These

codewords can be applied to Pascal's Triangle.

Each codeword with seven 0' s

and three l's represents a route
from T that proceeds, in some

order, a total of seven blocks
east and three blocks north. .

All such routes end at B. The

route for 0100011000 is shown.

1 7 28 84 210 462 924 1716 3003

1

1

1

6 21 56 126 252 462 792 1287

5 15 35 70 126 210 330 495

4 10 20 35 56 84 20 165

6

-I

10 15 21

B

28 36

111............ 1
1 1 1 1 1 1 1

T

01000 1 1000

The "120" at intersection B indicates that there are 120 distinct routes from T

to B. Hence there are 120 codewords with seven O's and three 1 ' s. And there-

fore, in solution to the combinatorial problem, there are 120 distinct ways to

arrange seven silver rings and three brass rings on a pole.

In this problem, ...ie introduotion of the binary code recalled earlier applications

of Pascal's Triangle, established the required one-to-one correspondences, ....1c1

indicated which element of Pascal's Triangle was appropriate for the problem.

The next section illustrates the anplication vf similar techniques in the solution
oi probability problems.

FAMILIES

We all know of at least one large family with a preponderance of boys or a pre-

ponderance of girls : the Pontello's with six sons and two daughters or the

Williams' wifh seven daughters and no sons. Probability questions naturally

arise fp- such situations. For example, in a fdmily with eight children, what
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is the probability that there are exactly six sons? that all are daughters? that

at least six are daughters? Through application of Pascal's Triangle, combina-

toiics provides a means to calculate such probabilities.

A key to a combinatorial approach to these problems is to classify families

according to the sex and the order of birth of the childre.i. For example, any

family with exactly five children, two young boys and three older girls, is

classified BBGGG. Two families are considered distinct if their number or

order of children differ. For example, BBGB and BGBB are distinct, as are GGG

and GGGG. This classification assists a combinatorial approach to these pro-

blems because any two distinct families with the same number of children are
tequally probable. For eXample,BBBGG ,BGBGB , and GGGGG are all equally

likely families. The following problems employ this classification to provide

combinatorial applicatior.s of Pascal's Triangle to probability problems.

Problem I Calculate the proaability that a family with eight children

has exactly six sons.

Solution: Determining this probability requires the calculation of :

a . The number of distinct eight-children fair +lies in terms of

the sequences of boys and girls; and

b. The number of those families with exactly six boys.

The number of distinct families with eight children equals the number of eight-

letter codewords using B and G . By simply changing the coordinate labels,

Pascal's Triangle can be used.

t It is assumed that the proba'Ality of a child being a girl is 50%.
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Each eight-letter codeword refers

to a path of length eight, starting
at T. It is easily determined that

all such paths end on the encircled

diagonal.

5

165 495 I 287 1003 6435 12 870

120 330 7* 1 716 3432 6.435

1 14 210 4 62 924 1710 1003

PkIk

irmin210

126 252 462 792 1287

330 495

3

10

6

Mal
10 15 21

84 20 165

8 \ 3 6 AS

2 5

1 1

Boy (B)-->

Therefore, there are 256 (1 + 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1 = 256)
paths of length eight. So there are 256 eight-letter codewords with B 's and G's

and also 256 distinct families with eight children. Of these 256 families, the

number of distinct families with six boys equals the number of eight-letter

codewords with six B's and twoG's.

All such codewords represent paths

from T which end at intersection C.

There are 28 distinct paths from T

to C and 28 codewords with six

B's and two G's.

1 9 45 165 495 1 287 1003 6.435 12 870

36 120 330 792 U16 3432 6.435

1 2 84 210 462 924 1716 1003

6 56 126 252 A 62 792 1287

1 S 15 . 126 210 330 495

4 IC 20 . 56 : 120 165

1 3 6 10 15

AlphilL

AS

eV
1 2 3 4 5

C I 1 1 1 1 1

Boy (3) --->

Therefort., there are 28 distinct families with six boys and two girls. Se the

probability that a family with eight childton h ,as exactly six sons is
256 64

or approximately 0.11.

71
7

V,



In a similar manner, each of the following problems about children in a family

can be interpreted as a problem about codewords consisting of B's and G' s and

subsequently as a problem about counting paths on the Pascal Triangle grid.

For each problem, the appropriate entries on the grid are encircled.

Problem 2 Calculate the probability that a family with eight children

has all girls.

Solution:

LIM.
Or 'L

9 45 165 495 I 287 3 003 6435 12 870

tak. 3.6 120 330 1 716 3A 32 0435

1 hal
o

5

28

2)

84

56

210

126 252

924 1716 3003

A 62 792 1287

15 35

20

I$ \ 126

50

210 330

120

495

165

t-

1

10 15

5

1

Ikkh,, 2 8

7 \

30

8

12

oy ( B ) -->

P = 0.004.

Problem 3 Find the probability that a family with eight children has

six or more girls.

ow\

c.)

III 165

1

[495 1 287 1003 6.4 35 12 870

N,

I

1 ,

1

r
11-

\\.1..
IN

6r- -

5

3

1.2IN

,20_ 330_

210

792 1 716 1432 6,435

462 924 I 716 3003

21

15

10

35

20

10

126

41.7111

15

252 462 792 28 7

126 330 495

165111

01136
120

12

1 1
BoY (B)

I + 8+2.8

= A16- ;=2



Problem 4 Find the probability that a family with six children has

exactly three boys.

Solution:
9 45 165 495 1287 3.003 6.4 35 12 8 70

9 36 120 330 792 1.716 1432 6.4 35

a7 26 84 210 4 62 92 4 1 716 3.00 3

MONIIIIIIII.1IIII 126 252 4 62 792 1.28 7

SIIIII70 126 210 330 495

1 libreN1 56. 84 120 165

1 3 6 10 111 21 2 6 3 6

2 3 4 hill
1 1 1 BM
Boy (B) --->

SUMMARY

20P 1+6+15t20+/5+6+1-
.._ 20 5 0.31
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Pascal's Triangle is a powerful device for investigating many probability pro-

blems through a combinatorial approach. Motivated by a detective story, stu-

dents can discover the basic additive pattern of the array of numbers. Not

only does the story lead to the construction of Pascal's Triangle, but the story

also develops a binary code that proves very useful in aprlying the trianyle to

.solve combinatorial and probability problems. This set of activities demon-

strates how a rich problem-solving situation can motivaL. a mathematical

concept, namely Pascal's Trianale, and a'so lead to understanding and appli-

cations of that concept. With this approach, problem solving becomes both a

means and an end in mathematics education.

Whose triangle is it? Chu's, Tartaglia's, Cardano's, Pascal's, and any student's
who learns its power and recognizes its elegance.

3
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* * *

In the CSMP curriculum, the activities described in this paper appear in the

fifth-grade lessons from the Workbook strand, the sixth-grade lessons from

the Language of Strings and Anows strand, and the sixth-grade lessons from

the Probability and Statistics strand.
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API-LNDDC

The earliest and most fundamental applications of Pascal's Triangle involve

either binomial expansions or combinations. In algebra, the elements of

Pascal's Triangle indicate the coefficients of the expansions of expressions

such as (a + b)7.

1

1

1 4

1 5

1 6 15

2 1

3 3
6 4 1

10 10 5 1

20 15 6

35 35 21 7 1 )
1 8 28 56 70 56 28 8 1

The eighth row of Pascal's

Triangle provides the

coefficients for (a + b)7.

(a + b )7 =
1a7 + 7a6b + 21a6b2 + 35a4b3

+ 35a3b4 + 21a2b6 + 7ab6 + 1b7

In general, the (n + 1)th row of Pascal's Triangle provides the coefficients
r.

for (a + b)n. 4

A fundamental question in combinatorics is to determine the number of distinct

subsets of a specific size of a given set. For example, "How many different

three-person subcommittees can be four-led from a committee of seven members?"

1

1 'Z. 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 ®35 21 7 1

1 8 28 56 70 56 28 8 1

The answer, 35, is the fourth

element of the eighth row of

7a scar s Triangle.

In general, the umber of subsets dith r elements from a set with n elements is

the (I + 1 )
th entry in the (n + 1) th row of Pascal's Triangle. Further cornbina-

tc.Lial application, if Pascal's Triangle appear in this paper.



An Area Model for Solving Probability Problems t

Richard Armstrong

Most American children have an intuitive concept of randomness , partially due
to games involving dice, spinners, and cards. Since pi<,Qbability provides a

rich source of problem-solving experiences, we decided to tend our students'
ilformal experiences and include probability as an integral par6-i>f our elemen-

tary mathematics curriculum. The article, "Probability and Statistics in Grades

1 to 3," in this b(,ok descris stories and games for second and third grades
which introduce concepts such as expected frequency, equally likely events,
and prediction. The students' reactions to these activities indicated to us

their capability of progre s sing to the analysis of one-stage probability experi-

ments through combinatorial methods. In one third-grade lesson, the students

considered the thirty-six equally likely outcomes when two dice are thrown

and determined that there are six ways for a suin of seven to occur. Thereby
6 1they calcuiated that the probability of rolling a sum of seven is or

36 6

Their success and enjoyment in analyzing several one-stage probability situa-
+ is demonstrated that these students were capable of considering more complex

ni,dtistage experiments in the intermediate grades. However, traditional arith-

metic solution techniques of such problems tend to require either unwieldy

combinatorial analysis or a well-developed u.'deistanding of the addition and
multiplication of fractions. Of course, the consideration of these problems

could be postponed to later grade, but even for more mature students the com-

putational aspects of arithmetic solutions often tend to obscure rather than
illuminate the underlying probabilistic concepts.

Tht, need for an alternative model for solving probability problems became ap-

parent. To be appropriate for intermediate grade students, we thought the model

This paper appears in NCTM's 1981 Yearbook, Teaching Statistics and
\ '70Probability.
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should

be sufficiently powerful to handle fairly sophisticated probability

problems ;

rely primarily on mathematical skills that the students have already

acquired;

be consistent with the student 31 current understanding of probabilistic

concepts ;

support the eventual development of more advanced solution techniques.

Considering that most probability situations intrinsically involve fractions and

that a common model for fractions involves the partitioning of circular or rec-

tangular regions ("pies" or "cakes" ) , perhaps it is natural that we developed

a geometric model to satisfy the above criteria. In this model, a unit square

is divided into regions so that the areas of the regions are proportional to the

probabilities involved in the situation. The following three activities indicate

the use and development of this model and moreover illustrate its pedagogical

and mathematical characteristics.

MARRIAGE BY CHANCE

Mr. Simons, a fifth-grade teacher, tapes a poster on the board and with appro-

priate embellishment tells the following story, occasionally allowing students

to react and comment.

ENTER ----)

t This story is inspired by a popular short story, "The Lady or the Tiger?" by
Frank Stockton which appears in A Storyteller's Pack : A Frank R. Stockton

Reader, Scribner, 1968.
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"The king and queen of a medieval kingdom arranged a marriage for their daugh-

ter and Prince Cuthbert from a neighboring kingdom. The princess accepted

this plan without enthusiasm. A short time before the proposed wedding day,

she met Reynaldo handsome, clever, romantic, but only a peasant. Their

love developed quickly and secretly, but inevitably the king learned of their

relationship. Irate, he ordered that Reynaldo be thrown into a room full of

tigers. But in response to his daughter's pleas, he offered a' compromise:

Reynaldo would walk through a maze, each path leading to one of two rooms

While the hungry tigers wait in one room, the hopeful princess waits in the
_

other room. If Reynaldo enters the latter room, he and the princess could

marry."

Pointing to the poster, Mr. Simons continue "The king showed the princess
a map like this one of the maze and let her decide in which room to wait. Re-

member that Reynaldo does not have a copy of the map and can only guess
which paths to follow. Which room is he more likely to enter, A or B?"

3Some students suggest that Reynaldo's probability for entering each room is ,
61

or 7, because there are three doors into each room. However, other students
realize that the answer is not so obvious, since Reynaldo is more likely to

arrive at the third door from the top than at other doors because there is a path
which leads directly from the entrance to the third door. After more discussion,

the majority of the class votes that the princess should wait in Room B.

Mr. Simons draws a large square on the board and suggests,

"Let's use this square to determine the probability that

Reynaldo will enter Room B. When he enters the maze,

what is the first choice Reynaldo must make?" When a

student responds that Reynaldo must choose to take the

upper path, the middle path, or the lower path, Mr. Simons

adds some information to the square.
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"Pve divided the square Lnto three equal parts, since

each of the three paths is equally likely to be chosen

by Reynaldo," explains Mr. Simons. "What happens

if Reynaldo chooses the middle path?" A student ob-

serves, "He's lucky and walks.straight to the room

where the princess is waiting." Mr. Simons' shows

this by marking "P" in the center section of the square.

He continues, "What happens if Reynaldo chooses the

upper path?" Observing that the upper path splits into

two paths, the students state that Reynaldo's chances

of reaching each room would then be the same. They

agree to indicate this by dividing in half the part ctf

the square labeled "upper path."

Then the class correctly divides and labels the region

for the lower path.

For contrast, Mr. Simons colors gray the regions

marked "P" and red the regions marked "T".

Looking at the square convinces the class that they

have placed the princess in the correct room, since

more than half the square is colored gray. Mr. Simons

agrees and inquires how they could calculate exactly

Reynaldo's probability of finding the princess. With

hints and encouragement, the class decides to divide

the square into small pieces all the same size and to

count the number of gray pieces and red pieces.
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Out of eighteen pieces of the same size, eleven are gray and seven are red.

Therefore, Reynaldo has eleven out of eighteen chances to find the princess.
11 2His probability of success is -17, or almost .-. His success is not guaranteed,

ot course, but the class did place the princess in the better room.

Same students a,. first were intent on finding clever ways for Reynaldo to detect

and avoid the tigers. Rather than being out of place, this humorous diversion

emphasized the need to accept certain restrictions when a situation is being

modeled. As in real-life applications, the situation had to be idealized. An

advantage of embedding a problem in a story instead of using a real example is

that the necessary restrictions can be minimized and well controlled,

Solvino several more probability problems presented in story contexts prepaies

the students to consider a famous problem from the early history of probability

theory a problem which requires more sophisticated mathematical insights.

A PROBLEM OF POINTS

In the history of mathematics, the first probability questions arose from games

of chance. One particularly intriguing problem, now called the "problem oi

points," ippeared as early as the fourteenth century. The following is an exam-

ple of the problem. Two gamblers play a game for a sthke which goes to the

first playet to gain ten points. If the game is stopped when the score is 9 to 8,

how should the stake be divided between the two players? It is assumed that

the players have equal chances of winning each point.

This problem was popular and controversial in Europe in the sixteenth and early

seventeenth centuries. In 1556, Tartaglia claimed to have the solution but si-

multaneously declared that any solution is "judicial rather than mathematical,"

that is, it must be agreed upon by the two players (an astute commentary on

applied mathematics! ).

In 1654 Antoint. Gombard, the chevalier de M6r4 and a member of King Louis

XIV's court in France, encountered the problem through his interest in mathematics

and gambling. Being an unsolved problem, he proposed it to a young mathema-
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tician, Blaise Pascal. The ensuing correspondence between Pascal ana an

older friend, Pierre Fermat, reveals that they developed three distinct tech-

niques for correctly solving this problem. The application of these techniques

to other probabilistic questions provided an impetus to mathematicians and

eventually led to the development of modern probability theory.

Embedding the problem of points into a children's game and using the area tech-

nique allows intermediate grade students to solve this historically significant

problem.

Let's listen to 1'.:s Kell as she describes a game to her class. "Rita and Bruce

play a game. Rita has one red marble and one blue marble. With her hands

behind her-back, she mixes them and then puts one marble in each hand. Bruce

chuoses a hand. If he selects the hand,with the blue marble, he scores one

point. Otherwise Rita scores one point. The procedure is repeated, and the

winner is the player to tirst score ten points."

Rita Bruce

1111 lii

A:ter playing the game a few times in class, Ms. Kell suggests the following

.)ituation. "One day, Rita and Bruce must stop a game when the score is Rita 9

and 13:Lice 8. It they continue the game the next day, what is the probability

that Rita will win:"

The Belgian math educators, irederique and Georges Papy discovered this
solution technique for the "problem of points." Their solution revealed to otIr
staff the poter.tial of the method in many other situations.
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After discussing the game and making some estimates, the students use a

square to analyze the situation:

!f the score is 9-8, the next score

will be 10-8 or 9-9 with equal like-

lihood. Divide the square into halves.

Rita wins it the score is 10-8. Color

the appropriate region red for Rita.

I: the score reaches 9-9, the game is

:air. Color half the appropriate region

red tor Rita and half gray for Bruce.

q 8

10-8 q q

5-8

9 - 8

Three-tourths oi tilt, square is colored red and one-fourth gray. Therefore when

Rita is leading 9 to 8, the probability of her winning is 3 and the probability of
4

1Bruce winnihg is -T. Because of the symmetry induced by using one red marble

d nd one blue marble, we can immediately conclude that if Bruce were leading
3

') to 8, his probabilitv of winning would be and Pita's probability of winning
4

1
would be --

4

8 ')
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The solution for the problem when Rita is leading 9 to 7 is similar and reveals

a useful shortcut.

If the score is 9-7, the next score will

be eithk 10-7 or 9-8, with equal likelihood.

Rita wins if the score is 10-7.

For the intermediate score 9-8, we could

consider the scores 10-8 and 9-9. But the

previous argument shows that if 'Ota leads
3

9-8, her probability of winning is -zi. There-

fore the region for "9-3" can immediately be
3 1colored 7. red and 7 gray.

q 7

10-7 q-8

q -7

,

1`....41
i v

9 -7

Ottce the square is divided into regions of the same size, there are seven red

pieces and one gray piece. Therefore, if Rita is leading 9-7, her probability
7

of winning the game is -5..

B- applying the area technique, students can now determine Rita's and Bruce's

winning probabilities for any intermeaiate score. Such a task appears uninter-

esting and cedious. However, the use of the area technique has suggested a
i

very r-itural application of the concept of recursion kr example, using the

computed result for the "9-8" problem to shorten the solution of the "9-7" pro-

blem. In fact, by detecting patterns, using recursi,)n, and occasionally ern-

plo,,_ ig the area technique to check hypotheses, a class is able to determine
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quickly Rita's and Bruce's probabi/ities of winning at any intermediate score.

The following chart indicates the odds (Eruce: Rita) for winn1ng a game to ten

points when each player has at least five points. Readers are invited to check

the results, detect and contirrn patterns, and thereby extend the chart to include
lower intermediate scores.

8
Bruce' s -f

Intermediate
Score 6

ODDS OF WINNING (BRUCE: RITA)

31:1 15:1 7:i 3:1 :1

57:7 26:6 i 1 :5 4:4 :3

99:29 42:22 16:16 5: 11 :7

163:93 64:64 22 :42 6: 26 :15

256:25b 93:163 29 :99 757 :31

5 7 8

Rita's Intermediate Score

This -.olution of the problem of points by the area method is similar to one of

the solutions of Pascal and Ferrnat in that each depends on a technique of par-
titioning. However, instead of partitioning a region, Pascal considered the

partitioning of a stake of 64 pistoles (units of money). Also, each solution

uses a different justification for its partitioning. Of Pascal and Fermat's other

two solutions, one relied on combinatorios and the other on the addition oc

independent probabilities. Secondary school mathematics students could gain

some 7aluable insights into probability by solving the problem of points on

their own and then comparing their solution to Pascal and Fermat's three solu-

tions.

Th interesting extension to the problem of points occurs if Rita and Bruce use

two red marbles and one blue marble in their game. The altered patterns ana

recursions reflect the influence of the asymmetry induced by the new marble

mixture.
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AN ARCHER; GAME

Modeling the analysis on a square provides several pedagogical advantages

tor solving probability prolems. Pictorial representation of the analysis pro-

vides visual insights into probability concepts. Reliance on geometric skills

allows the development ot concepts, which a lack of arithmetic skills would

normally impede. Division of a region in proportion to the appropriate proba-

bilities appeals to the students' intuitive understanding of probability. But

this solution technique also provides a mathematical advantage by producing a

less complex solution for certain types of sophisticated probability problems.

f or example, the probability problem presented in the following story involves

an infinite Markov chain.

2
As archers , Pdta hits the target of the tir...a and Bruce hits the target

3
of the

5

time. They decide to have i contest. Letting Bruce shoot first since he is the

poorer atcher they alternate shots until one wins by hitting the target. Who is

favored? What is each contestant's probability of winning?

Use a square to calculate the probabilities.

iiru,.e shoots first and has a probability of 1
3

Ar.g the target and winning immediately.

Color ot the square gray.
3

I; "(uce misses the target, Rita shoots and wins
2

b\., hitting the target with a probability of
5

Of

the colored regio
2r., color of it red.
5

86

o Bruce wins

Rita wins



Notice that the ratio of the area of the gray regions to the area of the red

regions is 5: 4.

It both shots have missed, Bruce shoots again, and
..

1his probability of hitting the target is
3

If no one has hit the target, Rita shoots again, and
2her probability of hitting the target is .
5

Notice that for the newly colored regions, the ratio of the area of the gray

regions tu the red regions is again 5: 4. Therefore, for all the colored regions,

the 5: 4 ratio is maintained.

Continuing the process, the uncolored region

gradually vanishes and the ratio of the area of the

gray regions to the area of the red regions is

always 5:4.

i
4....

Therefore, it is plausible (and coirect) to conclude that for this archery contest

the ratio of Bruce's chances of winning to Rita's cnances of winning is 5: 4.
5 5Thus, Bruce's probability of winning is

5
---- or Shooting first provides+ 4 9

a suffThient advantage to overcome his lesser skill.

The probability problem involved in this archery cu, est is an example of a

Markov chain. The area technique provides a solution that does not require

advanced algebraic processes such as matrix multiplication, sumrne.tion of
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infinite series, or the formation and solution of linear equations. Of course,

the intuitively appealing conclusion that a particular ratio is maintained through-

out an infinite process is assumed but not proven at this level.

PERSPECTIVE

A desire to allow intermediate grade students to progress in their understanding

of probability concepts without relying on a uomprehension of the multiplication

and addition of fractions motivated the development of this area technique.

Observing the students' ability to apply this model to solve fairly sophisticated

probability problems and listening to their responses ccdrivince us that this goal

was achieved. Besides its pedagogical athantages, this area technique pro-

vides simpler solutions to certain advanced problems such as some Markov

chain problems.

However, we do riot suggest that this area method should supplant other ap-

proaches to probability. Other representations, for example using proability

trees , provide further insights into probability topics. As problems become

more complex and lead to general theories, the use of variables and algebraic

techniques become a necessity. Therefore we suggest that a strong background

for probability be built in the intermediate and mfddle grades by parallel deve-

lopment of these topics: numerical skills with rational numbers; analyses of

probability problems by co.nbinatorial methods , by this area technique, and by

usino trees; statistical experiences which include the concept ot expected fre-

_Iuency ; and an introduction to variables. Each of these topics by itself is

appropriate in the intermediate grades and taken together would provide students

the ability to model and solve realistic, fascinatiny probability and statistical

problems in later grades.

* * *

In the CSMP curricul,Irn, the activities described in this papr.:r appear in the

fifth- and sixth-grade lessons from the Probability and Statistics strand.
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Breaking a Stick: Probability Without Counting

Joel Schneider

Probability in schocl mathematics curricula commonly occurs in finite situations,

for example: What are the chances of picking a white ball from a collection of

white balls and black balls? By contrast, consider this problem : If a stick is

broken at two points chosen 3 t random, what is the probability that one may

construct a triangle with the three pieces? Some breaks yield a triangle; for

example, all three pieces might be the same length and give an equilateral

triangle. Some breaks do not yield a triangle ; for example, two of the pieces

might be very short.

Succes

/V/ 7 ) /________A

Failure

Of course, there are an inanity of cnoices for the breaking points and so no

simple counting of successes is possible. Our approach of using a geometrical

device to represent the problem is based on an idea of Castelnuevo (Proceedings

of First International Congress on Mathematical Education, Dordrecht (Holland),

D. Reidel, 1969) and modified by G. Papy (1977 seminar at CEMREL Inc., St.

Louis). Using a geometrical approach to a probability problem is a particularly

attractive example of cross-fertilization among areas of mathematics.

The students' experiences of geometry throughout CSMP is informal and largely

based on the use of oeveral tools : the compass, the straigatedge, and a device

for constructing parallel line segments. One application of the last tool is in

effecting parallel projections, providing one of the 'oasic experimental construc-

tions with which to study the problem. Developing the geometrical prerequisites

and solving the probability problem occupies weekly lessons for most of a sernes-

ter for a class of sixth-grade students. This article describes the content of

the lessons.
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THE TRIANGLE INEQUALITY

When can three line segments be used to build a triangle? The Triangle

Inequality provides a ready test to answer the question in terms of the relative

lengths of the line segments. An informal statement of the Triangle Inequality

is that the distance (x) from one point (A) directly to another (B) is at most

the distance ( y + z) taken via a third point (C).

x < y + z x < y -+- z

In general, for any points A, B, and C, x s y + z. F-om this we deduce the

Triangle Inequality: Any two sides of a triangle together are longer than tie

third side.

In dl cases,
x + y > z, x + z > y, and y z > x.

The si.atement of the Diangle Inequality is direct and simple, almost obvious.

But appreciation of its gnificance usually requires experience. In the CSMP

curriculum, the students' discovery oi- the Triangle Inequality follows a sequence

of activities in constructing polygons under a variety of constraints on their

sides. We begin the sequence with inforinal sketches of shapes to clarify the

idea of polygon. The object of the discussion is to narrow the concept without
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resorting to formalism. Examples . .

AQ
and counter examples . . .

><1
lead to recognition of polygons (more formally, "simple closed polygons").

With the idea of polygon secure, we attempt to construct polygons under con-

straints on the lengths of the sides.

Duplication of line segments is basic to these constructions. The available

tools are a compass and a straightedge. The following sequence of constructions,

posed as problems, enables students to develop their facility with the tools as

they respond to increasingly restrictive constraints on the number and length of

sides of polyu.)ns.

Problem 1 : Construct a polygon with eight sides, all having the same

length.

Many solutions are possible; students each construct severai.

The key to the construction lies in drawing the sixth side so as to bring the ends

of the chain of sides close together. Then the seventh and eighth sides close

the shape. There are usually two choices for the location of the last corner and

these are located by finding the intersections of the arcs centered on the free
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endpoints (A and B) as shown here.

7.
The last corner must be
one of these twc points,
located with a compass.
Thus there are two choices
for seventh and eighth sides

13

I

i

Several experiences with this problem, with varying numbers of sides, provide

students an opportunity to develop a good sense of the use of the compass in

constructing polygons under a simple constraint. The constraint is so simple

as to allow the students to concentrate on developing their techniques. Through

studying this problem with several numbers oi: sides: we discover the fact that

while there are many solutions with 8 sides, with 6 sides, and with 4 sides,

there i: only one solution with 3 sides, namely the equilateral triangle.

Problem 2 : Given two line segments, cilaw a quadrilateral so that each

side is the same length as one of the Lwo segments.

Jnce ac.iin there are many solutions. By comparing their solutions, the class

discovers that they fall naturally into families. There are five combinations of

sides : all short, all long, one short aad three long, three short and one long,

and two short and two long. The first two cases appeared along with Problem 1;

there are many solutions, but each is a rhombus.

S
emell=010
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In the case of one short and three long, there is again only one family of

solutions. If we classify with respect to the arrangement of sides, there is

only short-long-long-long, even though the shape may vary. For example,

and

The case of three short and one long is similar; there is only one family of

solutions, short-short-short-long. Again the shape may vary; for example,

sy"------.
L

and
s,s/s..s.&..

L

The case of two short and two long is more interesting since there are two

families of solutions, depending on the cider of the cides in rotation: short-

long-short-long or short-short-long-long. The first sequence results in a
parallelogram and the second in a kite or a wedge.

S S

parallelogram kite wedge

Drawing the longer diagonal in red in several examples of the parallelogram

suggests a comparison of the diagonal with the two unequal sides of the parallel-
ogram.

L

L
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There are many parallelograms that solve the problem, their diagonals are

different in length, but experimentation suggests that the diagonal cannot

longer than the combined length of the long side and the short side. An exa-

mination oz the kites leuds to the same conclusion.

With a good sense of the construction techniques and with an introduction to

an interaction of lengths of sides, students are ready to focus on triangles.

Problem 3: Given two line segments, construct triangles so that every

side is the same length as one of the segments.

The case in which all segments are the same length was settled before; only an

equilateral triangle is possible. There are two other combinations of sides:

short-short-long and long-long-short. In examining the problem with various

pairs of segments, two situations arise. In some cases, two triangles can be

constructed; in other cases, only one triangle can be constructed.

Of course, the attribute that determines the number of triangles is the relative

length ot the segments. And the rule to be discovered is that two triangles can

be constructed if and only if doubling the shorter segment exceeds the longer

segment, a special case of the Triangle Inequality. This instance of the Tri-

angle Inequality is especially attractive in that each combination of short and

long segments yields at least one tilangle.



Problem 4: Given three segments, construct a triangle such that there

is a side that has the same length as each of the given
segments.

As before, provided with several sets of segments, students experiment,

succeed, and fail in constructing triangles.

Successes

failures

The successes and failures indicate the Triangle Inequality: Three line seg-
ments can be used to construct a triangle if and only if the two shorter seg-

ments together exceed the longest that is, any two sides of a triangle together
exceed the third in length.

Notice that this development of the Triangle Inequality does not involve mea-

surement of the line segments, but only direct comparison of their lengths,

accomplished easily with a compass. However, we can immediately pass to
arithmetic if appropriate. For example, segments of lengths 3 cm, 6 cm, and
8 cm yield a triangle because 3 cm + 6 cm > 8 cm, but lengths of 5 cm, 6 cm,

arid 12 cm do not yield a triangle since 5 cm + 6 cm < 12 cm.

With the Triangle Inequality and with extensive experience in constructing

polygons given seveial line segments, we are ready to return to the original
problem.
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BROKEN STICKS

Break a stick into three pieces. Label the pieces "A", "B", and "C".

A

According to the Triangle Inequality, to make a triangle any two sides must be

konger than the third side. In particular,

A and B together must exceed C,

A and C together must exceed B, and

B and C together must exceed A.

By examining many broken sticks and comparing the lengths of their pieces, we

notice a pattern. Look at the largest piece say it is C. How long can it be

if we are to construct a triangle? If the stick measures 100 cm, whatever the

length ot C, A and B make up the remainder. C cannot be too long if C is 80

cm long, then A and B together are 20 cm long, but in order to form a triangle

they must exceed C. Hence C cannot be 80 cm long. More generally, if C is

more than halt the stick, then A and 3 together are less than half the stick and

no tilarigle can be constructed. But if C is the longest piece and C is less than

halt the stick, then A and B together are longer than half the stick and the three

pieces yield a triangle. This conclusion suggests a modified version of the

Triangle Inequality: It a stick is broken at two points chosen at random, one

can construct a triangle with the pieces if and only if each piece is less than

half ot ',.he stick.

Wc represent the stick as a line segment. The first task is to cnoose two

breaking points at random. Random choice is familiar from other situations In

the probability strand, but the simultaneous random choice of two points is a

new problem. For this we recall some ideas from earlier work in geometry.

Coordinates on a grid provide a link between a pair of points and a single point.

That is, two points (one on each axis ) identify a single point on the plane and

vice versa. Regardless of the orientation of the axes, the linking mechanism

in the constructions is parallel projection along the axes.
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kandomly selecting two points on a stick requires a slight modification: we

make both projections onto the same line. Thus given a line in the plane and

two directions tor projection. shown by the red and the blue lines in the follow-

ing illustration, each point in the plane produces two points on the line through

parallel projections.

it we consider only one of the half planes, then choosing one point in the half

plane at random is equivalent, thlough the dual projections, to choosing two

points on the line at random. This technique provides the random device for

breaking our stick at two points.

We mark a segment, PQ, of the line to represent the stick. Points in the plane

prouuce two, one, or zero points on the stick through the dual projections. We

experiment to tind the set B (shaded in the next illustration) of points in the

half plane that corresronds to pairs of points on the stick.

B consists of all points
inside this triangle.
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Having developed a means to effect the simultaneous random choice of two

points of the stick, the probability question is : Which Points in B correspond

to points at which to break the stick into three pieces that can form a triangle?

The Triangle Inequality provides a useful criterion to apply to the pieceS. We

need to find a criterion for deciding whether a point in B will yield a triangle.

After sufficient experience with dual projections, we nortnalize_the representa-

tion by choosing projections that result in an equilate:al triangular region for

.B. Coloring the segments of the stick red, black, andIalue provides a conven-

ient notation fur discussing the problem.

B consists of all points
inside this triangle.

>

Now we can experiment by cnoosing a point in B, performing the dual projections

and attempting to construct a triangle.

Success Failure

In experimenting with many choices of points in B, students classify points in

B as ". uccesses" or "failures" and discover that they fall in clusters.

98 -)P-14
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The dots representing failures appear in three clusters; three clusters three

segments three colors. We explore the result in terms of the red, blue, and

black segments. Of course, varying the choice of a point in B results in vary-

ing lengths for red, blue, and black segments. When can the three segments

be used to form a triangle? The Triangle Inequality, discovered earlier, reveals

that each must be less than half of the stick. Through many experiments, chcos-

ing a point in B, performing the parallel projections, ald testing the segments,

we find the points that give too long of a black segment appear to cluster to-

gether. And the same is true for points giving too long of a blue segment and

points giving too long of a red segment.

A,give black segments
Points in this triangle

that are too long.

Points in this triangle
give blue segments
that are too long.

Points in this triangle
give red segments
that are too long.

We can ceitify that the three sets of points do cluster and locate the boundaries

of the clusters. The points of B that yield red, black, and blue segments, all

of proper length, are those in the central triangular region S.

The ratio of the area of S to that of B is one to four. The problem is solved.

The probability of breaking a stick into three pieces with which we can form a
1triangle is T .
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* * *

In the CSMP curriculum, the activities described in this paper appear in the

sixth-grade lessons from the Geometry and Measurement strand.
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Shunda's Newsstand

Clare Heidema

The business world offers many opportunities for statisticians, especially in

advising decision-making proceses. Elementary school age youngsters in

their everyday lives also are confronted with decision situations, some with a

business flavor, where a rudimentary understanding of statistics may.prove
useful. However, the pedagogical concerns of making the study of these

situations accessible at an early age often prohibits consideration until the

problems can be discussed on a high mathematical level. Consider, for exam-

ple, the classic "Newsboy's Problem" concerning a newspaper seller attempting

to maximize profit. Children can appreciate such a problem; indeed they may

have paper routes or operate newspaper stands themselves. SFUNDA'S NEWS-

STAND provides an excellent example of how an operations research problem

involving statistics in a decision-making context can be presented at the ele-

mentary school level.

Crucial to the presentation of the problem in terms that fifth-grade students can

understand is the use of stimulating pictures to view the sample data in a variety

of ways. The pictures and graphs provide an alternative to technical numerical

methods ; an alternative that is both aesthetically and pedagogically appealing.

This approach illustrates two goals of CSMP: (1) to present the best of mathe-

matical content essential for understanding the nature of mathematics and its

ever-increasing applications to diverse situations in the real world; and (2) to

engage youngsters immediately and naturally with the content and applications

of mathematics, making mathematical ideas accessible to young children through

the use of non-verbal languages.



SHUNDA'S PROBLEM

A common problem in the business world is to determine the optimal quantity of

items to buy or produce in order to make the most profit. Many factors affect

such decisions and no one can be guaranteed of always making the best,choice.

Still, educated decisions can be made by doing a careful study of sample data

and by assuming that past behavior of the consuming public is a good predictor

of future behavior. There is always a risk; all one can do is decide what is the

most reasonable prediction. SHUNDA'S NEWSSTAND is concerned with such a

business world problem as it affects Shunda, a young newspaper seller.

We present the situation in a story-workbook
t

, that is, as a story told in the

pages of a "comic book." Along the way the students respond to questions and

solve intermediate problems. They become familiar with a variety of pictorial

representations of information and supply the necessary .-e.1:ults needed to under-

stand the main problem. Prompted by a series of stimulating pictures for record-

ing data, the students use the daily demand to determine the most profitable

inventory of newspapers. *
The CSMP Library

Our story is about Shunda, a newspaper

seller, who has a newsstand on the

corner of Hamilton Street and Euler

Avenue. Each day between 4:00 and

6:00 PM, she sells newspapers to
people passing by her stand.

MATH STORY WORKBOOKS

S-27101

NEWS i
7

STAND

..........J-,,
by

Georws Papy
Kt t.. L .....
V.... S ..

t SHUNDA'S NEWSSTAND is in The CSMP Library, a collection of math story-
workbooks providing fanciful excursions into the colorful world of mathematics.

* In this paper, we use actual reproductions (in reduced form) from the booklet,
omitting color except where it is essential to the presentations.
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Several pages at the beginning of the booklet present basic information about

Shunda's job. Shunda buys newspapers from a dealer for 10 cents each, and

she sells them to her customers for 20 cents each. Since the number of
Shunda's customers varies from day to day, the dealer agrees to buy back the

unsold papers for 5 cents each.

For each newspaper SOLD, Shunda makes a gain of 10 cents.

= +10 = 10

3

cents gain

RETURN

COUNTER

For each newspaper RETURNED. Shunda has a loss of 5 cents.

= -5 = 5 cents loss

4
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Shunda wants to have a successful business and to make as much money as

possible. She devises procedures for keeping records of her business from day

to day,

SHUNDA' S BALANCE SHEET FOR ONE DA Y

One newspaper Sea balances two newspapers RuuRrio .

5

SUPPLYi
12

Re+urned

6:00pm

FINAL SALES

10
Sold

SUPPLY

22 newspapers

GAIN

1.00

LOSS

.60

PROFIT

The students now work through several pages of practice using Shunda's record

keeping procedures. We will display only selected pages from the booklet to

demonstrate the variety of pictures and the nature of the individual work.

lir)L, ki
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Shunda begins her newspaper business as an apprentice and so is allowed to

buy differing numbers of papers from day to day depending on what she expects

the demand to be.

ON ELECTION DAY...

Shunda bought newspapers.

She sold newspapers.

She returned newspapers.

SHUNDA' S

Profit-o-meter

BALANCE SHEET

SUPPLY GAIN LOSS PROFIT

9
10

These pages ask students to read graphs and to calculate Shunda's daily profit.

The stylization on page 10 reflects Shunda's whimsical side. Such artistic

freedom requires little or no explanation, and it contributes to the students'

experience viewing data in a variety of ways.

10,1
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On days when Shunda has a positive profit, she is happy; when she has a

negative profit, she is unhappy; and when she breaks even, she shrugs her

shoulders and hopes for a better next day.

Complete:

e
11111 Aire

11111111111111 /NM

12

Complete :

13

Students must use only the red:blue ratio to determine Shunda's mood or sales

on several days. This step suggests the critical role in Shunda's business of

a one-third, two-thirds ratio of returns to sales. Later we will see how these

picture contribute to a way of determining a most profitable Inventory.

The story continues with new information that presents Shunda's main problem.

The training period for Shunda will end shortly. Then she will have to follow

stricter rules; the daily supply of newspapers will have to remain constant:

the same number every day. Shunda must decide what constant daily supply

would be the best to buy from the dealer. How can she make such a decision?

In order to determine the best daily supply of newspapers to buy from the dealer,

Shunda keeps a record of the daily demand during an experimental twenty-day

period.
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Students draw a graph of Shunda's sales record.

Shunda Started her newspaper business as an apprentice Her learning and

training pei icd will end Nwernber 15th Atter tNt day, she will have to

follow stricter rules and the daily Supply of newspapers she buys will have

to remain CONSTANT the same number every day In order to discouer

the best supply to buy from the dealer. Shunda decides to keep a record ot

the daily demand during an experimental 20 day period

'

14,)

/7 2,5

rnen b unda viii deter- e unit wouli.11,,be teen Ins t'et ,onstiPt

luring 11%0 "per iJI .er Ica Of

1+ttoot.o/....toot
5.4, t7t'tottt ttOtt t/ ttt-

1+7t0,

1,44,74}1,
1 0 4 0 0 47}4444.+.1tt I!t-ttf
1-4f frf 4-'it t4tt+1,45-

r141""

17 2 31 8 5 17 ZZ 27

t t :!:
1 *

(6 IT ZZ th 6

Shunda hopes that if she can determine what would be the best constant supply

during that experimental period, then she can expect it also to be the best con-

stant supply in the future.

Before proceeding towards a solution, students stop to express their opinions

on Shunda's decision. Such a problem interests 10 to 12 year olds ; they may

be )ust beginning to earr. their own spending money. This discussion can bring

out the students' natural curiosity about business matters; it tests their intui-

tion about implications in the statistics for a twenty-day experimental period.

Our experience suggests that students will think of a variety of ways of view-

ing the data ; for example,

Shunda should get only as many papers as she is sure to sell; then

she is sure to have a positive profit every day.

Shunda should get about 17 newspapers every day because she most

often sold that number of papers.

Shunda should get about 22 newspapers every day because half the

time she sold more than 22 newspapers and half the time she sold

less than 22 newspapers.

107



Shunda should get about 20 newspapers every day because that is

halfway between 35 (the most she sold) and 5 (the least she sold).

Shunda should get 22 newspapers every day because that is the average

number she sold daily during the experimental period.

SHUNDA'S SOLUTION

We continue our story with Shunda organizing and studying the demand process

as reflected in her records for the experimental twenty-day period.

Shunda arranges the COlumns from shoriest to tallest

*O.

lilt AIM

1..1.11111.11E3EzzOnzsgi 27a 3 .4_31'35

* *

h

. . and then has the columns "close ranks".

OUESSIOMMMOMMUMMNOMOMamanarreasamaaaanams 4 IIn
IIIN

SINIMEM WWI 1 mommumall u III

44
am UMMDSTMWASE

moommommunsoionsommammon II
in IIIIIIII 111111:1
mom 'Liam's.'

1111:11111:11.11111:24:1:1111 um
Sum4mimMENWO milmillgwammOOMINEN
4MNONNNON44 NM IMsslINMssool
mappposompa
mammonism.. et milimm441111 III

mO44444421444441114444mignmossum in

IIIMINMIIMPLIMIIIIIIIIIIIII ILII

A
a p mo
am soppmoppogs 4.114NOSIMOM EMI

ushommunonsusahlribnopmagipsamon monmpomms.. a m
arm onommommosompommap ppm

MN 44.441114M4111411mOMMIMM muM144
4I44.40444441.4412414MOMMIIM

11114§4 144444111 MIIVIIMI4 MT USIIIIIIIIILIIIIIIIIIIIIIIIIIIII

II1:1616111111114111111111:111 In li

IIIIIIITIIIIIIIIIIIIIITIII IIIII
44 44 4

IiiiIMI IMI ia
si

1.11119111111;11.1111111 11111!
IIIIIIIIIIIIIIIIIIIIII1 VIII
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17

Students follow along stopping to provide calculation results as needed. This

contribution and their previous practice with completing balance sheets or

"profit-o--meters" provide opportunities for students to find various calculation

methods.
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The largest demand during the twenty-day

experimental period was 35. Suppose

Shunda would decide on a constant daily

supply of 35 newspapers. Page 19 of

the booklet shows a record for the

twenty-day experimental period with

the constant supply of 35 newspapers.

We can view this picture as putting

Shunda's profit-o-meters for the

twenty days side by side and as

hiahlighting the demand staircase.

Students complete a balance sheet . .

19

35

25

/5

10

BALANCE SHEET

for 20 day experimental period

DAILY SUPPLY TOTAL GA IN TOTAL LOSS TOTAL PROFIT

$31.00413.004444.0035

and then question the choice of 35 as a constant L:aily supply. With such a

supply, Shunda would satisfy her customers every day, but is it her most pro-

fitable choice? It seems that there is considerable loss (red) in the previous

picture.

With the above picture and previous experience of finding daily gain, loss, and

profit, stude its explore "what if" questions in preparation for determining a

most profitable constant daily supply.

109
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Suppose Shunda would decide on a

constant daily supply of 20 news-

papers: Page 21 of the booklet shows

a record for the twenty-day experi-

mental period with the constant

daily supply of 20 newspapers.

Would this choice produce more

or less profit than a constant daily

supply of 35 newspapers? There

is much less loss (red) but also

less gain (blue).

Stu.ents complete a balance sheet . .

NOMOMMONIM OM

11111 1111111 1a
II

MUM 1111.11111Earlall 1111
III NIII IIIIIIus
MUNE 01111MMUNIN MI
UMNINIEMMENUMMIUMIMuNNIMMONMIIIMMIE M
MOINEMMIIMMUMEMEM IN E
NEMMEMOMMEMOMM 111111111
mummimmummummummsmonnummummommul

21

35

25

20

/5

/0

BALANCE SHEET

for 20 day experimental period

DAILY SUPPLY TOTAL GAIN TOTAL LOSS TOTAL PROFIT

-° 32.65_42.45435.10ZO

and find that 20 is a better choice than 35 for the constant daily supply. But

is it the best possible choice?

1 U;)
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The next two pages of the booklet suggest a way to view the effect of changing

the constant daily supply.

Shunda asks herself. "Would a constant daily supply of 21 newspapers be

a better choice than 20 "

Using her profit-o-meter, Shunda finds that a constant supply of 21 would

increase her profit by

.80

Locking at the picture on page 23, Shunda notices immediately that changing

the :onstant daily supply from 21 to 22 newspapers would again Increase her

profit by

22

I
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11111111111111
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MUM NIIIIIBHMINEEIIEWNISIIIIIIIIIIIIIII
IIIIIIRENIIIIIIENIMECIIIMEIMIIIIIIIIIIIIIIII
11111111111111111111111111111011111M1111111111111
IIBIIIIIIIIIIIIIIIIIMEMEBIEIMIIIRMIIIII
111111111111111101MINIMMIMINIIIIIII
INSIMSOUREMBIBUSINIENNIONMEI
111111111111111111111111113115111211111111111.111
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1111111111111111111111111MINI 11111111111111111
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1111111141111111M111110111151116111110111111111
111111111111111111MINEMMININIIIIIIIIII
11111111111111111111111111111111121111115111111111111111111

IIIIIIIIIIININIIIIIIIIIIIEEISMINIIINIIIMIII
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11111111111111111111111111111111111111111111111111111

23

23
22
21

20

Therefore, with a constant daily supply of 22, Shunda's total profit would be

$34.25 ($32.65 + $.80 + $.80). This procedure demonstrates how the earlier

stylizing of Shunda's profit-o-meter contributes appropriate experience for

studying the graph that describes the demand process.
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The story-workbook ends with a discussion of Shunda's conclusion. Since 26

papers would have been the best constant supply for the twenty-day experimen-

tal period, Shunda decides to adopt it. Of course, she cannot be sure this will

remain the most profitable choice. She does not try to forecast future demand;

what she does is make the best choice based on the limited evidence of the

experimental period. As in most business ventures, she cannot avoid taking

some risk.

This example of statistics activities for the elementary school intends to in-

volve students in a real world application of mathematics. There is consider-

able calculation practice in a meaningful context. There is the opportunity to

use bar graphs in a dynamic way to organize data. And, most importantly from

a mathematical point of view, there is the experience of using statistics for

problem solving.

* * *

In the CSMP curriculum, the activities described in this paper appear in the

fifth-grade lessons from the Probability and Statistics strand.
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Population Growth

Tom M. Giambrone

Twenty-five percent of all of the people who ever walked
the face of the earth are living now. Ninety percent of
the scientists of all time are living now.

Population statistics can be a rich source of surprising information that suggests

many implications about the world around us. The above statistics may indicate

why population growth is of worldwide concern and may reflect one reason for

the continuing technological explosion of this century.

Population S ta ti s tic s appeal to students' natural curiosi:y about the world around

them and the future that lies ahead. The sixth-grade CSMP curriculum includes

a series of lessons on population growth. The lessons provide the opportunity

to organize, interpolate, and analyze real life statistics. More importantly,

students use the data to make inferences about the past, present, and

future a rare activtLy at the elementary level in the study of statistics.

Can elementary school students handle such a sophisticated topic? Can they

form inferences based upon statistical data? Students' experiences in the four

lessons outlined below reveal that the answer to each question is a definite'

"yes."

POPULATION GROWTH RATES

The first lesson introduces students to the concept of population growth rate.

Using their intuitive sense of ratio, students develop techniques to compute

the growth rates and net population gains of several United States' cities.

The lesson begins with a discussion focused on the question: "What factors

affect population growth?" Students conclude that the facto:s affecting population



fall into four categories: births, deaths, immigration, and emigration.

The discussion then moves to the meaning of the following statistic:

In 1977, the United States showed a net gain in population.
Its rate of growth was an additional 7.5 people for every
1,000 people.

Able to interpret this statistic, students proceed to develop several methods for

computing growth rate and net gains. Specifically, they complete this cha-t of

data on five U.S. cities.

City Population
Annual Population Growth
Rate per 1,000 People

Net Population
Gain One Year

Hondo,
Texas

5,000 41.8

Harrisburg ,
Pen nsylvan ia i 14.7

Honolulu,
Hawaii

705,381 23.7

New York ,
New York ' 01-1-' 10.5 F
Sunnyside,
Oregon 6,208 54

Bogulusa ,

Louisiana
21,823 "301

Some methods that students might suggest are described below.

Imagine the City of Hondo divided into five groups of 1,000 people.

Each group gains about 9.8 people, so the net gain is about 49

people (5 x 9.8).

Harrisburg's population is about 80,000, so the net loss is approx-

imately 1,176 people (80 x 14.7).

Sunnyside s population is about 6.2 thousands.- Consider

6.2 x ri = 54 and fill in the box by trial and error or by calculating

54 1.- 6.2. The growth rate is approximately 8.7 people per 1,000.

By not providing specific procedures for computing the net growth or the growth

rate, the teacher allows students to create their own techniques. The strategies
I 115
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they develop increase their understanding of the concept "population growth

rate" the key for later lessons in this sequence.

TABLES AND GRAPHS

The activities in a second lesson demonstrate that appropriate organization of

data facilitates both the interpretation of the data and inferences based upon

the data. Students begin by examining a mock newspaper article:

The United States population growth rate has been declining
lately. It also declined for a while before World War II.
We can easily see this from the following data. For each
year, the population growth rate per 1,000 people is given:
1950, 17.1; 1935, 6.3; 1965, 11.8; 1920, 18.8; 1955, 17.5;
1910, 15.2; 1975, 7.0; 1930, 7.3; 1940, 9.8; 1915, 14.9;
1960, 16.6; 1925, 13.8; 1970, 10.7; 1945, 10.7.

The teacher highlights the effect of the disorganized nature of the data by asking

several questions such as: When was the growth rate the highest? lowest?
When did it decline? The students' difficulty in answering these questions

motivates the central theme of the lesson: Pre there better ways in which to

present this data? The students suggest a table and a graph.

Annual Growth Rate
Year (per 1,000 people)

1910 15.2
1915 14.9
1920 18.8
1925 13.8
1930 7.3
1935 6.3
1940 9.8
1945 10.7
1950 17.1
1955 17.5
1960 16.6
1965 11.8
1970 10.7
1975 7.0
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1

After constructing the table and the graph, the class reconsiders the questions

they previously found so difficult. The ease of answering the sante questions

accentuates the benefit of organizing data.

Further questions reveal the advantage of the graph over the table. For exam-

ple, what was the growth rate in the year 1927? Through interpolation, the

students can estimate a 1927 growth rate of 12 people per 11000 (see the
v

arrows below).
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The graph also shows the large fluctuations in the U.S. population growth rate.

The remander of the lesson focuses on the historical events that could have

caused such fluctuations. Students suggest the Great Depression and World

War II as possible causes for the low rate of growth from 1930 to 1945. However,

changing sociological views, such as people deciding to marry later or electing

to have fewer children, seem a more likely cause of the recent low growth rate

from 1970 to 1975.

The activity of organizing data, found in the first part of this lesson, is fairly

commonplace in the study of statistics. However, the discussion of factors

that may have caused the large fluctuations in the population growth rate repre-
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sents an important shift in the '.esson. The students move from simply reading

the data to interpreting and making inferences based upon the data. These

attempts to interpret data allow students to appreciate the purpose of organizing

data into graphs, rather than rotely practicing techniques of data organization.

Correlating data with known historical and sociological factors provides a

framework for later using current data to predict future events.

POPULATION PYRAMID

There exist many ways to graph a set of population data. The choice of a parti-

cular graph reflects the feature of the data that the statistician wishes to high-

light. In a third lesson, students explore several population graphs. First,

the comparison of two distinct graphical representations o; population growth

during the period 1910 to 1975 allows students to observe the different ways

that each graph portrays the same inform tid --CM . Then students also analyze

another graph, the population pyramid. The lesson begins with a comparison

of the following graphs.

A: Population Growth Rate B: U.S. Population (1910-1975)
for the U.S. (1910-1975)
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Since these two graphs display the same census data, they reflect the same

trends in different ways. For example, students notice the fact chat the popu-

lation is always increasing, shown in graph A by the rate always being positive

and in graph B by the total population always rising. Also, the low period in

growth from 1930 to 1940 shown in graph A corresponds to a "leveling off" in

graph B. Conversely, the sharp rise from 1950 to 1960 in graph B indicates

the high growth rate that is recorded in graph A. This activity encourages

students to observe different ways that graphs can display rates of growth. In

particular, the graphic comparison demonstrates that a declining (but positive )

growth rate and a rising total population can occur simultaneously.

Besides studying the overall growth rate, demographers also analyze the United

States population according to various factors : age, race, sex, religion, etc.

With this in mind, the following statistic motivates the idea of population dis-

tributions the second theme of this lesson.

United States : K-8

lq70 : 34, 300,000 students

1975 : 32, 000,000 students

The decline in total elementary school enrollment surprises most students. Who

might be concerned about this decline in school enrollment? Teachers are most

certainly concerned. Implications of this single statistic include school clos-

ings, teachers being laid off, and many other problems all too familiar to the

reader. An open student discussion of this statistic focuses on such implications.

When first confronted with the above statistic, students assume that the decline

in school enrollment is due to an overall decline in the population. This conjec-

ture , however, contradicts the previous observation that the United States always

had a positive growth rate from 1910 to 1975. To resolve this dilemma, the
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teacher presents the idea of population distribution by age group.

U. S. Population by Aqe Group - 1976

Age

Percent of

Total Population

0-4

5-9

10-14

15-19

20-24

25-29

30-34

35-39

7.1

P.1

9.2

9.8

9.1

8.3

6.6

5.5

Age

Percent of

Total Population

40-44 5.2

45-49 5.4

50-54 5.6

55-59 5.0

60-64 4.3

65-69 3.9

70-74 2.8

75-79 1.9

80-84 1.3

>84 0.9

Total U . S . Population : 214,649,000

By comparing the percent of population in the 5-to-14 age groups (the approxi-

mate K-8 enrollment in 1975) with the 10-to-19 age groups (the K-8 enrollment

in 1970), students note that the enrollment loss appears due to a decrease in

the number of people in that age group. The table reveals how the population

in a particular age group can decline even as the total U.S. population continues

to increase.

The introduction of population distribution by age suggests other questions of

human interest such as: How many Americans remember World War II? World

War I? How many Americans are over the age of 65?

After exploring these questions, students conclude the lesscn by constructing

a population pyramid of the United States population.
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Upon graphing and interpreting a population pyramid for the United States, stu-

dents naturally assume that pyramid to be "normal" for countries. In this fourth

lesson, the very dissimilar shapes of both Sweden's and Mexico's population

distribution graphs as compared to the United States' graph, conclusively dis-

proves the students' assumption. A goal of this lesson is to interpret the three

countries' graphs as a means for conjecturing the political priorities of the

countries and what problems may lie in the future for each nation.

The beginning of the lesson returns to a conjecture made in the first lesson.

Between the years 1930 and 1945 the United States experienced a low rate of

growth. Two historical occurrences were given as the cauS%'' of this: The Great

Depression and World War II. The teacher challenges the students to use the

population pyramid to determine which event appears to have had greater impact.

1
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A notable feature of the above, graph is the relatively low percent of people in

the 40-to-44 age group compared to neighboring age groups. Being of age

somewhere between 40 and 44 in 1976 means being born sometime in the years

from 1932 to 1936 the midst of the Depression. Apparently, either people

during the Depression chose to have fewer children or their children had a much

lower life expectancy. The graph does suggest that the Depression was a greater

contributing factor to the lower population growth rate than was World War II.

Besides graphs, another simple statistical tool for comparing national popula-

tions is averaging. The population pyramid does not allow easy computation

of the mean age of the population; however, the median age is appropriate

and is easily computed. (The median age of a population is the age that 50%

of the population is younger than and 50% is older than. ) The dark gray

shading on the following graph indicates the younger 50% of the population.
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Most of the 25-to-29 age group is shaded dark gray. Therefore the median age

of the U.S. population is about 28. After completing this computation, students

discuss whether other countries are likely to have similar median ages. Even at

first glance, the population pyramids for Mexico and Sweden ( see below) reveal

the dramatically different population distributions in different countries.
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With Sweden's uniform population distribution, its median age is about 35,

higher than that of the United States. In Mexico, a greater portion of the

population is in the younger age groups and, therefore, the country has a low

median age, about 17.

What insights into areas of concern for these governments do these population

graphs and medians suggest? The remainder of the lesson focuses on a corn-

parison of some political and social issues these countries may soon face such

as :

United States and Sweden have a large population in the older age

groups who need support.

o United States is closing schools while Mexico needs to build more

schools.

Mexico's rapidly increasing population could cause shortages of

food, housing, and health facilities.

Sweden has the largest percent of older people, while Mexico has

the smallest.

As in previous lessons, the lesson has moved to a discussion about the data.

The importance is not so much the statistical tools that the students acquire,

but the important realization that these tools enhance the discovery and dis-

cussion of events in the world around them.

AN EXTENSION

One can extend a lesson either by embellishing one of the topics covered or by

applying the same statistical techniques to a different context. There are num-

erous avenues for extending these lessons. One possible extension is to study

the impact of the current population distribution of the United States to a topic

of recent controversy : the Social Security System.

There have been several raises in the Social Security tax in recent years, each

one promising to set the system on firm ground. As we shall see, the problem
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with the system may lie in its basic design, therefore calling for more creative

measures to rectify the system.

Some citizens assume that the Social Security System invests the money they

collect and later returns the money to the original contributors. In reality, the

system is designed so that the current work force generates the revenue for the

retirees currently on social security. In order to gain only a crude overview

and to simplify the analysis, we will contrast the total potential work force

(ages 20-62) to the total potential social security receivers (over 62).

AGE GROUP GRAPH
UNITED STATES - 1976

5% 10%

PERCENT OF TOTAL POPULATION

0 Potenttal rehrement tomrnunIty 13%

frofenha I work force 53%

The following questions highlight some difficulties in the Social Security System :

How many people in the potential work force does it take to maintain

one person on social security?

In 1981, how many people entered the work force for every person

who entered the retirement system?

Will the situation get better or worse? in 1990? (Assume life

expectancy of 80. )
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The graph provides answers to these questions. In 1976, approximately four

people (4 x 13 is about 53 ) in the potential work force were needed for every

one person on social security (a ratio of 4 tn 1). In 1981, however, approxi-

mately 5% of the population entered the social security system whilL only 10%

of the population entered the work force (a ratio of 2 to 1); thus the potential

work force is not growing as fast as the potential retirees . And as we can see

from the graph, the problem will continue to worsen in the future since the popu-

lation entering the work force is decreasing. Questions such as those above

could be used as a beginning of another lesson on statistics and economics.

The important statistical activity again givez the students an opportunity of not

just taking the data at face value but drawing implications from the data in re-

gard to some social issues!

SUMMARY

The series of lessons on population growth exhibits several valuable features

for the teaching of statistics, namely:
topics that interest students at a particular grade level,

s a problem-solving atmosphere, and

a unifying factor for a variety of mathematical tools and concepts.

Students' curiosity about the world around them begins to emerge in the inter-

mediate grades. Utilizing this curiosity is valuable in teaching, in particular

teaching mathematics, effectively. Students' interest in certain situations

can be employed to create problem-solving activities that they are intrinsically

motivated to resolve with the use of mathematical tools. The Population Growth

lessons are an example of such activities, using interest to explore content.

Building on a foundation of interest, the mathematical content is then introduced

as a means to resolve questions and to generate a source of new inquiries, thus

t Even this simple analysis sheds light on problems affecting the Social Security
System and can serve to produce many conjectures which can be tested with a
more fine grained analysis. Statistics for such a treatment can be found in
"Statistical Abstracts of the United States."
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creating a true problem-solving atmosphere. Students learn new statistical

methcis as well as gain an immediate appreciation of their application.

Lastly, an important lesson can be gained for curriculum design from the way

that population growth is used as a unifying theme for a variety of mathematical

concepts. For example, students encounter: reading graphs, estimating, per-

cents, ratios, as well as many other concepts and procedures that might other-

wise be taught separately as disjoint pieces of mathematics. The Population

Growth lessons are just one example of CSMP's curriculum design that engages

students in a variety of mathematical ideas presented in an interesting and

informative context.

* * *

In the CSMP curriculum, the activities described in this paper appear in sixth-

grade lessons from the Probability and Statistics strand.
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